Generalized inertial proximal deblurring
Authors
Y. Savoye
- School of Computer Science and Mathematics, University of Leicester, United Kingdom.
D. Yambangwai
- School of Science, University of Phayao, Thailand.
W. Cholamjiak
- School of Science, University of Phayao, Thailand.
Abstract
Visual signal deblurring is a challenging computational problem involving spatially invariant point spread functions, large
blurring matrices and deconvolution. We formulate the visual content restoration process as an inverse convex minimization
problem. We design a novel iterative multi-steps scheme incorporating an inertial term to approximate an element of the set
of solutions of accretive inclusion problems. We generalize our solver for a large variety of inverse problems in imaging such
as convex minimization, variational inequality and split feasibility problems. We compare the convergence rate and perceptual
quality assessment with state-of-the-art algorithms on various visual input data. We demonstrate the effectiveness of our solver
to deblur RGB images, HDR images, height fields, geometry images as well as motion caption data.
Share and Cite
ISRP Style
Y. Savoye, D. Yambangwai, W. Cholamjiak, Generalized inertial proximal deblurring, Journal of Mathematics and Computer Science, 37 (2025), no. 2, 167--189
AMA Style
Savoye Y., Yambangwai D., Cholamjiak W., Generalized inertial proximal deblurring. J Math Comput SCI-JM. (2025); 37(2):167--189
Chicago/Turabian Style
Savoye, Y., Yambangwai, D., Cholamjiak, W.. "Generalized inertial proximal deblurring." Journal of Mathematics and Computer Science, 37, no. 2 (2025): 167--189
Keywords
- Numerical optimization
- visual data
- deblurring
MSC
References
-
[1]
F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3–11
-
[2]
T. O. Aydin, R. Mantiuk, K. Myszkowski, H.-P. Seidel, Dynamic range independent image quality assessment, ACM Trans. Graph., 27 (2008), 1–10
-
[3]
S. Bianco, L. Celona, P. Napoletano, R. Schettini, On the use of deep learning for blind image quality assessment, Signal, Image and Video Processing, 12 (2018), 355–362
-
[4]
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183–202
-
[5]
S. P. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), 1–122
-
[6]
F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., 64 (1965), 1041–1044
-
[7]
C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103–120
-
[8]
M. Cˇ adík, R. Herzog, R. Mantiuk, K. Myszkowski, H.-P. Seidel, New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts, ACM Trans. Graph., 31 (2012), 1–10
-
[9]
R. K. Chaurasiya, K. R. Ramakrishnan, High dynamic range imaging, In: International Confrence on Communication Systems and Network Technologies, IEEE, (2013), 83–89
-
[10]
L. Chen, F. Fang, T. Wang, G. Zhang, Blind image deblurring with local maximum gradient prior, In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), (2019), 1742–1750
-
[11]
P. Cholamjiak, A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces, Numer. Algorithms, 71 (2016), 915–932
-
[12]
C. S. Chuang, Z.-T. Yu, L.-J. Lin, Mathematical programming for the sum of two convex functions with applications to lasso problem, split feasibility problems, and image deblurring problem, Fixed Point Theory Appl., 2015 (2015), 23 pages
-
[13]
P. L. Combettes, J.-C. Pesquet, Proximal splitting methods in signal processing, In: Fixed-point algorithms for inverse problems in science and engineering, Springer, New York, 49 (2011), 185–212
-
[14]
P. L. Combettes, V. R.Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168–1200
-
[15]
Y. Dang, J. Sun, H. Xu, Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13 (2017), 1383–1394
-
[16]
M. Delbracio, A. Almansa, J.-M. Morel, P. Musé, Subpixel point spread function estimation from two photographs at different distances, SIAM J. Imaging Sci., 5 (2012), 1234–1260
-
[17]
J. Douglas, Jr., H. H. Rachford, Jr., On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc., 82 (1956), 421–439
-
[18]
H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Kluwer Academic Publishers Group, Dordrecht (1996)
-
[19]
X. Gu, S. J. Gortler, H. Hoppe, Geometry images, In: Proceedings of the 29th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’02), Association for Computing Machinery, New York, USA, 21 (2002), 355–361
-
[20]
P. C. Hansen, Discrete inverse problems: insight and algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2010)
-
[21]
F. Heide, S. Diamond, M. Nieundefinedner, J. Ragan-Kelley, W. Heidrich, G. Wetzstein, Proximal: efficient image optimization using proximal algorithms, ACM Trans. Graph., 35 (2016), 1–15
-
[22]
C. W. Helstrom, Image restoration by the method of least squares, J. Opt. Soc. Am., 57 (1967), 297–303
-
[23]
A. Hertz, S. Fogel, R. Hanocka, R. Giryes, D. Cohen-Or, Blind visual motif removal from a single image, In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 6858–6867
-
[24]
S. Imnang, Viscosity iterative method for a new general system of variational inequalities in Banach spaces, J. Inequal. Appl., 2013 (2013), 18 pages
-
[25]
M. Jin, Z. Hu, P. Favaro, Learning to extract flawless slow motion from blurry videos, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 8112–8121
-
[26]
S. Jose, N. Mohan, V. Sowmya, K. P. Soman, Least square based image deblurring, In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, (2017), 1453–1457
-
[27]
D. Kitkuan, P. Kumam, A. Padcharoen, W. Kumam, P. Thounthong, Algorithms for zeros of two accretive operators for solving convex minimization problems and its application to image restoration problems, J. Comput. Appl. Math., 354 (2019), 471–495
-
[28]
G. Lavoué, R. Mantiuk, Quality assessment in computer graphics, In: Visual Signal Quality Assessment, Springer, Cham, (2015), 243–286
-
[29]
J. Li, A blur-SURE-based approach to kernel estimation for motion deblurring, Pattern Recognit. Image Anal., 29 (2019), 240–251
-
[30]
P.-L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979
-
[31]
Y. Liu, J. Wang, S. Cho, A. Finkelstein, S. Rusinkiewicz, A no-reference metric for evaluating the quality of motion deblurring, ACM Trans. Graph., 32 (2013), 1–12
-
[32]
G. López, V. Martín-Márquez, F. Wang, H.-K. Xu, Forward-backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., 2012 (2012), 25 pages
-
[33]
D. A. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 51 (2015), 311–325
-
[34]
R. Mantiuk, K. J. Kim, A. G. Rempel, W. Heidrich, Hdr-vdp-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions, ACM Trans. Graph., 30 (2011), 1–14
-
[35]
R. Mantiuk, R. Mantiuk, A. Tomaszewska, W. Heidrich, Color correction for tone mapping, Comput. Graph. Forum, 28 (2009), 193–202
-
[36]
A. Mosleh, P. Green, E. Onzon, I. Begin, J. M. Pierre Langlois, Camera intrinsic blur kernel estimation: a reliable framework, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), , (2015), 4961–4968
-
[37]
A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447–454
-
[38]
J. G. Nagy, K. Palmer, L. Perrone, Iterative methods for image deblurring: a matlab object-oriented approach, Numer. Algorithms, 34 (2006), 73–93
-
[39]
S. Nah, S. Son, K. M. Lee, Recurrent neural networks with intra-frame iterations for video deblurring, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 8102–8111
-
[40]
M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229
-
[41]
N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Optim., 1 (2014), 127–239
-
[42]
W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006–3014
-
[43]
F. Pighin, J. P. Lewis, Practical least-squares for computer graphics, In: ACM SIGGRAPH 2007 courses, (2007), 1–57
-
[44]
B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17
-
[45]
B. T. Polyak, Introduction to optimization, Optimization Software, Publications Division, New York (1987)
-
[46]
L. F. Richardson, On the approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam, Phil. Trans. R. Soc. Lond. A, 210 (1911), 307–357
-
[47]
R. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877–898
-
[48]
P. Stanimirovi´c, I. Stojanovi´c, V. N. Katsikis, D. Pappas, Z. Zdravev, Application of the least squares solutions in image deblurring, Math. Probl. Eng., 2015 (2015), 18 pages
-
[49]
S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 311 (2005), 506–517
-
[50]
W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., 11 (2010), 79–88
-
[51]
M. Trentacoste, R. Mantiuk, W. Heidrich, Blur-aware image downsampling, Comput. Graph. Int., 30 (2011), 573–582
-
[52]
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446
-
[53]
C. Vogel, Computational methods for inverse problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)
-
[54]
Z. Wang, A. C. Bovik, A universal image quality index, IEEE Signal Process. Lett., 9 (2002), 81–84
-
[55]
Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 20 (2004), 600–612
-
[56]
R. Wang, D. Tao, Recent progress in image deblurring, arXiv:1409.6838v1, (2014), 1–53
-
[57]
K. Wolski, D. Giunchi, N. Ye, P. Didyk, K. Myszkowski, R. Mantiuk, H.-P. Seidel, A. Steed, R. K. Mantiuk, Dataset and metrics for predicting local visible differences, ACM Trans. Graph., 37 (2018), 1–14
-
[58]
W. Xue, L. Zhang, X. Mou, A. C. Bovik, Gradient magnitude similarity deviation: a highly efficient perceptual image quality index, IEEE Trans. Image Process., 23 (2014), 684–695