Graphical illustrations of new inequalities involving Caputo Fabrizio integral operators
Authors
M. Tariq
- Department of Mathematics and Statistics, University of Lahore, Sargodha campus, Sargodha, Pakistan.
A. Nosheen
- Department of Mathematics, University of Sargodha, Sargodha, Pakistan.
Kh. A. Khan
- Department of Mathematics, University of Sargodha, Sargodha, Pakistan.
A. Alburaikan
- Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia.
S. El-Morsy
- Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia.
- Basic Science Department, Nile higher institute for engineering and technology, Mansoura, Egypt.
Abstract
In this research study, we concentrate on Caputo-Fabrizio operators because of their multiple applications.
At first, we proceed by providing a new identification for this operator. Subsequently, we use the recently discovered identity to develop a set of integral inequalities via \((s,m)\)-convex function. Moreover, in the context of integral inequalities, we demonstrate how the results enhance and refine a great deal of prior research. Later, in order to provide an improved comprehension of the recently discovered inequalities, we provide particular examples together with the corresponding graphs. Our findings build on preceding research and offer insightful perspectives and strategies for addressing various scientific and mathematical issues.
Share and Cite
ISRP Style
M. Tariq, A. Nosheen, Kh. A. Khan, A. Alburaikan, S. El-Morsy, Graphical illustrations of new inequalities involving Caputo Fabrizio integral operators, Journal of Mathematics and Computer Science, 37 (2025), no. 4, 373--385
AMA Style
Tariq M., Nosheen A., Khan Kh. A., Alburaikan A., El-Morsy S., Graphical illustrations of new inequalities involving Caputo Fabrizio integral operators. J Math Comput SCI-JM. (2025); 37(4):373--385
Chicago/Turabian Style
Tariq, M., Nosheen, A., Khan, Kh. A., Alburaikan, A., El-Morsy, S.. "Graphical illustrations of new inequalities involving Caputo Fabrizio integral operators." Journal of Mathematics and Computer Science, 37, no. 4 (2025): 373--385
Keywords
- Convex function
- fractional derivative
- fractional integrals
- mathematical operators
- probability theory
- Hermite-Hadamard inequality
MSC
References
-
[1]
R. P. Agarwal, R. R. Mahmoud, S. H. Saker, C. Tunç, New generalizations of Németh-Mohapatra type inequalities on time scales, Acta Math. Hungar., 152 (2017), 383–403
-
[2]
M. Avci, H. Kavurmaci, M. Emin Özdemir, New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 5171–5176
-
[3]
H. Barsam, S. M. Ramezani, Y. Sayyari, On the new Hermite-Hadamard type inequalities for s-convex functions, Afr. Mat., 32 (2021), 1355–1367
-
[4]
H. Barsam, A. R. Sattarzadeh, Some results on Hermite-Hadamard inequalities, J. Mahani Math. Res. Center, 9 (2020), 79–86
-
[5]
J. M. Borwein, A. S. Lewis, Convex Analysis and Nonlinear Optimization, Springer, New York (2000)
-
[6]
H. Budak, E. Pehlivan, Weighted Ostrowski, trapezoid and midpoint type inequalities for Riemann-Liouville fractional integrals, AIMS Math., 5 (2020), 1960–1985
-
[7]
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85
-
[8]
J. Chen, C. Luo, Certain generalized Riemann-Liouville fractional integrals inequalities based on exponentially (h,m)- preinvexity, J. Math. Anal. Appl., 530 (2024), 31 pages
-
[9]
M. Chinnamuniyandi, S. Chandran, X. Changjin, Fractional order uncertain BAM neural networks with mixed time delays: An existence and Quasi-uniform stability analysis, J. Int. Fuzzy Syst., 46 (2024), 4291–4313
-
[10]
M. J. Cloud, B. C. Drachman, L. P. Lebedev, Inequalities with Applications to Engineering, Springer, Cham (2014)
-
[11]
Q. Cui, C. Xu, W. Ou, Y. Pang, Z. Liu, P. Li, L. Yao, Bifurcation behavior and hybrid controller design of a 2D Lotka- Volterra commensal symbiosis system accompanying delay, Mathematics, 11 (2023), 23 pages
-
[12]
T. Du, Y. Peng, Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals, J. Comput. Appl. Math., 440 (2024), 19 pages
-
[13]
N. Eftekhari, Some remarks on (s,m)-convexity in the second sense, J. Math. Inequal., 8 (2014), 489–495
-
[14]
A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Inequal., 4 (2010), 365–369
-
[15]
A. Fahad, A. Nosheen, K. A. Khan, M. Tariq, R. M. Mabela, A. S. M. Alzaidi, Some novel inequalities for Caputo Fabrizio fractional integrals involving (, s)-convex functions with applications, Math. Comput. Model. Dyn. Syst., 30 (2024), 1–15
-
[16]
T. M. Flett, A mean value theorem, Math. Gaz., 42 (1958), 38–39
-
[17]
A. J. Gnanaprakasam, G. Mani, O. Ege, A. Aloqaily, N. Mlaiki, New fixed point results in orthogonal b-metric spaces with related applications, Mathematics, 11 (2023), 18 pages
-
[18]
S. Habib, S. Mubeen, M. N. Naeem, Chebyshev type integral inequalities for generalized k-fractional conformable integrals, J. Inequal. Spec. Funct., 9 (2018), 53–65
-
[19]
H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl., 2011 (2011), 11 pages
-
[20]
H. Khan, C. Tunç, A. Alkhazan, B. Ameen, A. Khan, A generalization of Minkowski’s inequality by Hahn integral operator, J. Taibah Univ. Med. Sci., 12 (2018), 506–513
-
[21]
P. Li, R. Gao, C. Xu, J. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on Hopf bifurcation of a type of BAM neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 11595–11635
-
[22]
G. Mani, S. Haque, A. J. Gnanaprakasam, O. Ege, N. Mlaiki, The study of bicomplex-valued controlled metric spaces with applications to fractional differential equations, Mathematics, 11 (2023), 19 pages
-
[23]
G. Mani, A. J. Gnanaprakasam, L. Guran, R. George, Z. D. Mitrovi´, Some results in fuzzy b-Metric space with btriangular property and applications to Fredholm integral equations and dynamic programming, Mathematics, 11 (2023), 17 pages
-
[24]
D. S. Mitrinovi´c, J. E. Peˇcari´c, A. M. Peˇcari´, Classical and new inequalities in analysis, Kluwer Academic Publishers Group, Dordrecht (1993)
-
[25]
G. Nallaselli, A. J. Gnanaprakasam, G. Mani, Z. D. Mitrovi´c, A. Aloqaily, N. Mlaiki, Integral equation via fixed point theorems on a new type of convex contraction in b-metric and 2-metric spaces, , 11 (2023), 18 pages
-
[26]
A. Nosheen, M. Tariq, K. A. Khan, N. A. Shah, J. D. Chung, On Caputo fractional derivatives and Caputo-Fabrizio integral operators via (s,m)-convex functions, Fractal Fract., 7 (2023), 16 pages
-
[27]
W. Ou, C. Xu, Q. Cui, Y. Pang, Z. Liu, J. Shen, M. Z. Baber, M. Farman, S. Ahmad, Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Math., 9 (2024), 1622–1651
-
[28]
S. Özcan, ˙I.˙I¸scan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 11 pages
-
[29]
B. G. Pachpatte, Mathemematical Inequalities, Elsevier B. V., Amsterdam (2005)
-
[30]
G. Rahman, A. Khan, T. Abdeljawad, K. S. Nisar, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Differ. Equ., 2019 (2019), 14 pages
-
[31]
S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator, Fractal Fract., 6 (2022), 17 pages
-
[32]
S. H. Saker, C. Tunç, R. R. Mahmoud, New Carlson-Bellman and Hardy-Littlewood dynamic inequalities, Math. Inequal. Appl., 21 (2018), 967–983
-
[33]
V. M. Tam, W. Wu, Caputo fractional differential variational-hemivariational inequalities involving history-dependent operators: global error bounds and convergence, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 20 pages
-
[34]
H. Ullah, M. Adil Khan, T. Saeed, Z. M. M. Mahdi Sayed, Some improvements of Jensen’s inequality via 4-convexity and applications, J. Funct. Spaces, 2022 (2022), 9 pages
-
[35]
V. Vijayakumar, R. Udhayakumar, S. K. Panda, K. S. Nisar, Results on approximate controllability of Sobolev type fractional stochastic evolution hemivariational inequalities, Numer. Methods Partial Differ. Equ., 40 (2024), 20 pages
-
[36]
M. Vivas-Cortez, M. Samraiz, M. T. Ghaffar, S. Naheed, G. Rahman, Y. Elmasry, Exploration of Hermite-Hadamard- Type integral inequalities for twice differentiable h-convex functions, Fractal Fract., 7 (2023), 26 pages
-
[37]
C. Xu, Q. Cui, Z. Liu, Y. Pan, X. Cui, W. Ou, M. U. Rahman, M. Farman, S. Ahmad, A. Zeb, Extended hybrid controller design of bifurcation in a delayed chemostat model, MATCH Commun. Math. Comput. Chem., 90 (2023), 609–648
-
[38]
C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151
-
[39]
C. Xu, Y. Pang, Z. Liu, J. Shen, M. Liao, P. Li, Insights into COVID-19 stochastic modelling with effects of various transmission rates: simulations with real statistical data from UK, Australia, Spain, and India, Phys. Scr., 99 (2024),
-
[40]
C. Xu, Y. Zhao, J. Lin, Y. Pang, Z. Liu, J. Shen, M. Liao, P. Li, Y. Qin, Bifurcation investigation and control scheme of fractional neural networks owning multiple delays, Comput. Appl. Math., 43 (2024), 33 pages
-
[41]
C. Xu, Y. Zhao, J. Lin, Y. Pang, Z. Liu, J. Shen, Y. Qin, M. Farman, S. Ahmad, Mathematical exploration on control of bifurcation for a plankton-oxygen dynamical model owning delay, J. Math. Chem., 62 (2023), 2709–2739