Generating functions of Bernstein polynomials: Fourier series expansion and applications
Authors
A. Karagenc
- Department of Mathematics, Faculty of Science and Arts, Gaziantep University, TR-27310 Gaziantep, Türkiye.
M. Acikgoz
- Department of Mathematics, Faculty of Science and Arts, Gaziantep University, TR-27310 Gaziantep, Türkiye.
S. Araci
- Department of Computer Engineering, Faculty of Engineering, Hasan Kalyoncu University, TR-27010 Gaziantep, Türkiye.
Abstract
In this paper, we introduce the Fourier series expansion of the generating
function for Bernstein polynomials. We also present series formulas for the
generating function of Bernoulli polynomials. Furthermore, we establish
novel formulae between these series and Euler polynomials as well as
Zeta-type functions. The exploration of these connections sheds light on the
intricate relationships among these fundamental mathematical constructs.
Through these discoveries, we deepen our understanding of the interplay
between various polynomial families and associated mathematical functions.
These findings contribute to the broader landscape of mathematical analysis
and offer insights into the rich structure underlying theory of special functions.
Share and Cite
ISRP Style
A. Karagenc, M. Acikgoz, S. Araci, Generating functions of Bernstein polynomials: Fourier series expansion and applications, Journal of Mathematics and Computer Science, 37 (2025), no. 4, 386--394
AMA Style
Karagenc A., Acikgoz M., Araci S., Generating functions of Bernstein polynomials: Fourier series expansion and applications. J Math Comput SCI-JM. (2025); 37(4):386--394
Chicago/Turabian Style
Karagenc, A., Acikgoz, M., Araci, S.. "Generating functions of Bernstein polynomials: Fourier series expansion and applications." Journal of Mathematics and Computer Science, 37, no. 4 (2025): 386--394
Keywords
- Fourier series
- generating function
- Bernstein polynomials
- Bernoulli polynomials
- Euler polynomials
- Zeta functions
MSC
References
-
[1]
M. Açíkgöz, S. Araci, On the generating function for Bernstein polynomials, AIP Conf. Proc., 1281 (2010), 1141–1143
-
[2]
H. M. Ahmed, Numerical solutions of high-order differential equations with polynomial coefficients using a Bernstein polynomial basis, Mediterr. J. Math., 20 (2023), 31 pages
-
[3]
S. Araci, M. Acikgoz, Construction of Fourier expansion of Apostol Frobenius-Euler polynomials and its applications, Adv. Differ. Equ., 2018 (2018), 14 pages
-
[4]
S. Araci, M. Acikgoz, Applications of Fourier series and zeta functions to Genocchi polynomials, Appl. Math. Inf. Sci., 12 (2018), 951–955
-
[5]
A. Bayad, Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Math. Comp., 80 (2011), 2219–2221
-
[6]
C. B. Corcino, R. B. Corcino, Fourier expansions for higher-order Apostol-Genocchi, Apostol-Bernoulli and Apostol-Euler polynomials, Adv. Differ. Equ., 2020 (2020), 13 pages
-
[7]
C. B. Corcino, R. B. Corcino, Approximations of Genocchi polynomials of complex order, Asian-Eur. J. Math., 14 (2021), 14 pages
-
[8]
G. B. Folland, Fourier Analysis and its applications, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA (1992)
-
[9]
T. Kim, Euler numbers and polynomials associated with zeta functions, Abstr. Appl. Anal., 2008 (2008), 11 pages
-
[10]
T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on BbbZ_p, Russ. J. Math. Phys., 16 (2009), 484–491
-
[11]
T. Kim, D. S. Kim, G.-W. Jang, J. Kwon, Fourier series of sums of products of Genocchi functions and their applications, J. Nonlinear Sci. Appl., 10 (2017), 1683–1694
-
[12]
D. S. Kim, T. Kim, W. J. Kim, D. V. Dolgy, A note on Eulerian polynomials, Abstr. Appl. Anal., 2012 (2012), 10 pages
-
[13]
T. Kim, D. S. Kim, S. H. Rim, D. V. Dolgy, Fourier series of higher-order Bernoulli functions and their applications, J. Inequal. Appl., 2017 (2017), 7 pages
-
[14]
Q.-M. Luo, Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials, Math. Comp., 78 (2009), 2193–2208
-
[15]
C. S. Ryoo, H. I. Kwon, J. Yoon, Y. S. Jang, Fourier series of the periodic Bernoulli and Euler functions, Abstr. Appl. Anal., 2014 (2014), 4 pages
-
[16]
E. E. Scheufens, Bernoulli polynomials, fourier series and zeta numbers, Int. J. Pur Appl. Math., 88 (2013), 65–75
-
[17]
W. Schikhof, U. M. Calculus, An introduction to p-adic analysis, Cambridge University Press, Cambridge (1984)
-
[18]
Y. Simsek, Functional equations from generating functions: a novel approach to deriving identities for the Bernstein basis functions, Fixed Point Theory Appl., 2013 (2013), 13 pages
-
[19]
Y. ¸Sim¸sek, Generating functions for the Bernstein type polynomials: a new approach to deriving identities and applications for the polynomials, Hacet. J. Math. Stat., 43 (2014), 1–14
-
[20]
Y. Simsek, M. Acikgoz, A new generating function of (q-) Bernstein-type polynomials and their interpolation function, Abstr. Appl. Anal., 2010 (2010), 12 pages
-
[21]
H. M. Srivastava, Further series representations for (2n + 1), Appl. Math. Comput., 97 (1998), 1–15
-
[22]
H. M. Srivastava, J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier, Amsterdam (2012)
-
[23]
A. Urieles, W. Ramírez, M. J. Ortega, D. Bedoya, Fourier expansion and integral representation generalized Apostol-type Frobenius-Euler polynomials, Adv. Differ. Equ., 2020 (2020), 14 pages