Some properties and difference equations for the (q,h)-Frobenius-Genocchi polynomials
Authors
A. Alshejari
- Department of Mathematical Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
W. A. Khan
- Department of Electrical Engineering, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia.
U. Duran
- Department of Basic Sciences of Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay 31200, Turkiye.
Ch.-S. Ryoo
- Department of Mathematics, Hannam University, Daejeon 34430, South Korea.
Abstract
In recent years, utilizing the generalized quantum exponential function (or say \((q,h)\)-exponential function) that unifies, and extends \(q\)- and \(h\)-exponential functions in an efficient and convenient form, \((q,h)\)-generalizations of the several numbers and polynomials, such as Euler and tangent numbers and polynomials, have been considered and studied. Inspired by the mentioned studies, in this work, we consider \((q,h)\)-extension of Frobenius-Genocchi polynomials, and then we analyzed and derived some of their formulas and relations using their implicit summation formulas and symmetric identities. Also, we show that these polynomials are solutions of some higher-order \((q,h)\)-difference equations. In addition, we provide some symmetric \((q,h)\)-difference equations equality including \((q,h)\)-Frobenius-Genocchi polynomials. Moreover, we observe that \((q,h)\)-Frobenius-Genocchi polynomials are solutions of higher-order \((q,h)\)-difference equations combined with the \(q\)-Euler, \(q\)-Bernoulli, and \(q\)-Genocchi numbers and polynomials, respectively. Furthermore, we utilize a computer program to provide the structures and shapes of the approximate roots of the aforesaid polynomials.
Share and Cite
ISRP Style
A. Alshejari, W. A. Khan, U. Duran, Ch.-S. Ryoo, Some properties and difference equations for the (q,h)-Frobenius-Genocchi polynomials, Journal of Mathematics and Computer Science, 37 (2025), no. 4, 406--422
AMA Style
Alshejari A., Khan W. A., Duran U., Ryoo Ch.-S., Some properties and difference equations for the (q,h)-Frobenius-Genocchi polynomials. J Math Comput SCI-JM. (2025); 37(4):406--422
Chicago/Turabian Style
Alshejari, A., Khan, W. A., Duran, U., Ryoo, Ch.-S.. "Some properties and difference equations for the (q,h)-Frobenius-Genocchi polynomials." Journal of Mathematics and Computer Science, 37, no. 4 (2025): 406--422
Keywords
- \(q\)-numbers
- \((q,h)\)-derivative operator
- degenerate \(q\)-Frobenius-Genocchi polynomials
- \((q,h)\)-difference equation
MSC
References
-
[1]
M. S. Alatawi, W. A. Khan, New type of degenerate Changhee-Genocchi polynomials, Axioms, 11 (2022), 11 pages
-
[2]
A. Al e’damat, W. A. Khan, U. Duran, C. S. Ryoo, Construction for q-hypergeometric Bernoulli polynomials of a complex variable with applications computer modeling, Adv. Math. Models Appl., 9 (2024), 68–92
-
[3]
A. Al E’damat, W. A. Khan, C.-S. Ryoo, Certain properties on Bell based Apostol-Frobenius-Genocchi polynomials of complex variables, J. Math. Comput. Sci., 33 (2024), 326–338
-
[4]
G. Bangerezako, Variational q-calculus, J. Math. Anal. Appl., 289 (2004), 650–665
-
[5]
H. B. Benaoum, (q, h)-analogue of Newton’s binomial formula. Addendum to: “h-analogue of Newton’s binomial formula”, J. Phys. A, 32 (1999), 2037–2040
-
[6]
R. D. Carmichael, The General Theory of Linear q-Difference Equations, Amer. J. Math., 34 (1912), 147–168
-
[7]
J. Cˇ ermák, L. Nechvátal, On (q, h)-analogue of fractional calculus, J. Nonlinear Math. Phys., 17 (2010), 51–68
-
[8]
R. B. Corcino, C. B. Corcino, Higher order Apostol-Frobenius-type poly-Genocchi polynomials with parameters a, b and c, J. Inequal. Spec. Funct., 12 (2021), 54–72
-
[9]
U. Duran, M. Acikgoz, S. Araci, Construction of the type 2 poly-Frobenius-Genocchi polynomials with their certain applications, Adv. Differ. Equ., 2020 (2020), 14 pages
-
[10]
S. Gergün, B. Silindir, A. Yantir, Power function and Binomial series on Tq;h, Appl. Math. Sci. Eng., 31 (2023), 18 pages
-
[11]
F. H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinb., 46 (1909), 253–281
-
[12]
F. H. Jackson, q-Difference Equations, Amer. J. Math., 32 (1910), 305–314
-
[13]
V. Kac, P. Cheung, Quantum calculus, Springer-Verlag, New York (2002)
-
[14]
J.-Y. Kang, Properties of differential equations related to degenerate q-tangent numbers and polynomials, Symmetry, 15 (2023), 14 pages
-
[15]
J. Y. Kang, W. A. Khan, A new class of q-Hermite-based Apostol type Frobenius Genocchi polynomials, Commun. Korean Math. Soc., 35 (2020), 759–771
-
[16]
J.-Y. Kang, C.-S. Ryoo, Approximate roots and properties of differential equations for degenerate q-special polynomials, Mathematics, 11 (2023), 14 pages
-
[17]
W. A. Khan, U. Duran, J. Younis, C. S. Ryoo, On some extensions for degenerate Frobenius-Euler-Genocchi polynomials with applications in computer modeling, Appl. Math. Sci. Eng., 32 (2024), 24 pages
-
[18]
W. A. Khan, I. A. Khan, A note on (p, q)-analogue type of Frobenius Genocchi numbers and polynomials, East Asian Math. J., 36 (2020), 13–24
-
[19]
W. A. Khan, I. A. Khan, J. Y. Kang, On Higher order (p, q)-Frobenius-Genocchi numbers and polynomials, J. Appl. Math. Inform., 37 (2019), 297–307
-
[20]
W. A. Khan, D. Srivastava, On the generalized Apostol-type Frobenius-Genocchi polynomials, Filomat, 33 (2019), 1967–1977
-
[21]
B. Kurt, A note on the Apostol type q-Frobenius-Euler polynomials and generalizations of the Srivastava-Pinter addition theorems, Filomat, 30 (2016), 65–72
-
[22]
B. Kurt, On the degenerate poly-Frobenius-Genocchi polynomials of complex variables, arXiv preprint, arXiv:2007.08295, (2020), 14 pages
-
[23]
N. I. Mahmudov, q-analogues of the Bernoulli and Genocchi polynomials and the Srivastava-Pintér addition theorems, Discrete Dyn. Nat. Soc., 2012 (2012), 8 pages
-
[24]
N. I. Mahmudov, On a class of q-Bernoulli and q-Euler polynomials, Adv. Differ. Equ., 2013 (2013), 11 pages
-
[25]
M. Nadeem, W. A. Khan, K. A. H. Alzobydi, C. S. Ryoo, M. Shadab, R. Ali, Certain properties on Bell-based Apostoltype Frobenius-Genocchi polynomials and its applications, Adv. Math. Models Appl., 8 (2023), 92–107
-
[26]
M. R. S. Rahmat, The (q, h)-Laplace transform on discrete time scales, Comput. Math. Appl., 62 (2011), 272–281
-
[27]
C.-S. Ryoo, J.-Y. Kang, Properties of q-differential equations of higher order and visualization of fractal using q-Bernoulli polynomials, Fractal Fract., 6 (2022), 16 pages
-
[28]
C.-S. Ryoo, J.-Y. Kang, Various types of q-differential equations of higher-order for q-Euler and q-Genocchi polynomials, Mathematics, 10 (2022), 16 pages
-
[29]
B. Silindir, A. Yantır, Generalized quantum exponential function and applications, Filomat, 33 (2019), 4907–4922
-
[30]
B. Silindir, A. Yantır, Gauss’s binomial formula and additive property of exponential functions on Tq;h, Filomat, 35 (2021), 3855–3877
-
[31]
S. A. Wani, S. Shaikh, P. Alam, S. Tamboli, M. Zayed, J. G. Dar, M. Y. Bhat, An Algebraic Approach to the h- Frobenius-Genocchi-Appell polynomials, Mathematics, 11 (2023), 13 pages
-
[32]
A. Yantır, B. Silindir Yantır, Z. Tuncer, Bessel equation, and Bessel function on Tq;h, Turkish J. Math., 46 (2022), 3300–3322
-
[33]
B. Y. Ya¸sar, M. A. Özarslan, Frobenius-Euler and Frobenius-Genocchi polynomials and their differential equations, New Trends Math. Sci., 3 (2015), 172–180