Spectrum and pseudspectrum of \(D\)-stable matrices of economy models
Volume 38, Issue 3, pp 298--312
https://dx.doi.org/10.22436/jmcs.038.03.02
Publication Date: December 16, 2024
Submission Date: October 02, 2024
Revision Date: October 17, 2024
Accteptance Date: November 03, 2024
Authors
M.-U. Rehman
- Center for Research and Innovation, Asia International University, Yangiobod MFY, G'ijduvon street, House 74, Bukhara, Uzbekistan.
S. H. Alshabhi
- Department of Mathematics, Applied college at Khulis, University of Jeddah, Jeddah, Saudi Arabia.
A. O. Mustafa
- College of Business at Khulis, University of Jeddah, Jeddah, Saudi Arabia.
M. M. Mohammed
- Department of Mathematics, Applied college at Khulis, University of Jeddah, Jeddah, Saudi Arabia.
S. Aljohani
- Department of Mathematics and Sciences, Prince Sultan University, 11586 Riyadh, Saudi Arabia.
H. S. Mahgoub
- College of Business at Khulis, University of Jeddah, Jeddah, Saudi Arabia.
R. A. A. Bashir
- Department of Mathematics, Applied college at Khulis, University of Jeddah, Jeddah, Saudi Arabia.
A. A. Bakery
- Department of Mathematics, Applied college at Khulis, University of Jeddah, Jeddah, Saudi Arabia.
Abstract
The computation and analysis of structured singular values and \(D\)-stable structured matrices have an important and crucial role in system theory to study the stability and \(D\)-stability of dynamical systems. In this study, novel theoretical results are obtained to analyze interconnections between \(D\)-stability, \(D(\alpha)\)-stability, \(H\)-stability, a rank-1 perturbation to \(D\)-semi-stable matrices, and the computation of the bounds of structured singular values for structured and unstructured matrices. The proposed methodology is based on various tools from linear algebra, matrix analysis and system theory. The pseudo-spectrum of structured matrices appearing in economic models provides insights to analyze and characterize stability and instability analysis and sensitivity of linear dynamical models. The numerical experimentation's on the computation and comparison of lower bounds of structured singular values show the effectiveness of the proposed methodology. The Matlab EigTool is used on the computation of pseudo-spectrum for structured matrices arising from economy models.
Share and Cite
ISRP Style
M.-U. Rehman, S. H. Alshabhi, A. O. Mustafa, M. M. Mohammed, S. Aljohani, H. S. Mahgoub, R. A. A. Bashir, A. A. Bakery, Spectrum and pseudspectrum of \(D\)-stable matrices of economy models, Journal of Mathematics and Computer Science, 38 (2025), no. 3, 298--312
AMA Style
Rehman M.-U., Alshabhi S. H., Mustafa A. O., Mohammed M. M., Aljohani S., Mahgoub H. S., Bashir R. A. A., Bakery A. A., Spectrum and pseudspectrum of \(D\)-stable matrices of economy models. J Math Comput SCI-JM. (2025); 38(3):298--312
Chicago/Turabian Style
Rehman, M.-U., Alshabhi, S. H., Mustafa, A. O., Mohammed, M. M., Aljohani, S., Mahgoub, H. S., Bashir, R. A. A., Bakery, A. A.. "Spectrum and pseudspectrum of \(D\)-stable matrices of economy models." Journal of Mathematics and Computer Science, 38, no. 3 (2025): 298--312
Keywords
- Singular values
- structured singular values
- \(D\)-stable matrix
- \(H\)-stable matrix
MSC
References
-
[1]
A. Y. Alexandrov, V. V. Platonov, V. N. Starkov, N. A. Stepenko, Mathematical Modeling and Study of Stability of Biological Communities, St. Petersburg, SPbSU, (2006)
-
[2]
K. J. Arrow, M. McManus, A note on dynamic stability, Econometrica, 26 (1958), 448–454
-
[3]
R. Baldick, Electricity market equilibrium models: The effect of parametrization, IEEE Transactions on Power Systems, IEEE, 17 (2002), 1170–1176
-
[4]
N. Bruce, The IS-LM Model of Macroeconomic Equilibrium and the Monetarist Controversy, J. Political Econ., 85 (1977), 1049–1062
-
[5]
D. Carlson, A new criterion forH-stability of complex matrices, Linear Algebra its Appl., 1 (1968), 59–64
-
[6]
J. Chen, M. K. H. Fan, C. C. Yu, On D-stability and structured singular values, Systems Control Lett., 24 (1995), 19–24
-
[7]
Y. Chi, Y. M. Lu, Y. Chen, Nonconvex optimization meets low-rank matrix factorization, IEEE Trans. Signal Process., 67 (2019), 5239–5269
-
[8]
A. M. Y. Chu, Z. Lv, N. F. Wagner, W.-K. Wong, Linear and nonlinear growth determinants: The case of Mongolia and its connection to China, Emerg. Mark. Rev., 43 (2020),
-
[9]
A. C. Enthoven, K. J. Arrow, A Theorem on Expectations and the Stability of Equilibrium, Econometrica, 24 (1956), 288–293
-
[10]
N. Guglielmi, M. Ur. Rehman, D. Kressner, A novel iterative method to approximate structured singular values, SIAM J. Matrix Anal. Appl., 38 (2017), 361–386
-
[11]
M. Halton, M. J. Hayes, P. Iordanov, State-space μ analysis for an experimental drive-by-wire vehicle, Int. J. Robust Nonlinear Control, 18 (2008), 975–992
-
[12]
Z. A. Hailu, Demand side factors affecting the inflow of foreign direct investment to African countries: does capital market matter, Int. J. Bus. Manag., 5 (2010), 104–116
-
[13]
N. H. Hau, T. T. Tinh, H. A. Tuong, W.-K. Wong, Review of matrix theory with applications in education and decision sciences, Adv. Decis. Sci., 24 (2020), 1–41
-
[14]
D. Hershkowitz, N. Mashal, Pα-matrices and Lyapunov scalar stability, Electron. J. Linear Algebra, 4 (1998), 39–47
-
[15]
S. T. Impram, R. Johnson, R. Pavani, The D-stability problem for 4 × 4 real matrices, Arch. Math. (Brno), 41 (2005), 439–450
-
[16]
G. V. Kanovei, On One Necessary Condition of the D-Stability of Matrices Having No Less Than Two Zero Elements on the Main Diagonal, Automat. Remote Control, 62 (2001), 704–708
-
[17]
G. V. Kanove˘ı, D. O. Logofet, D-stability of 4× 4 matrices, Zh. Vychisl. Mat. Mat. Fiz., 38 (1998), 1429–1435
-
[18]
G. V. Kanove˘ı, D. O. Logofet, Relations, properties and invariant transformations of D-and aD-stable matrices, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 2001 (2001), 40–43
-
[19]
H. K. Khalil, P. V. Kokotovi´c, D-stability and multi-parameter singular perturbation, SIAM J. Control Optim., 17 (1979), 56–65
-
[20]
H. K. Khalil, P. V. Kokotovi´c, Control of linear systems with multiparameter singular perturbations, Automatica J. IFAC, 15 (1979), 197–207
-
[21]
S. Kousar, A. Ansar, N. Kausar, G. Freen, Multi-criteria decision-making for smog mitigation: a comprehensive analysis of health, economic, and ecological impacts, Spec. Decis. Mak. Appl., 2 (2024), 53–67
-
[22]
S. Kousar, S. Arshad, N. Kausar, T.-P. Hong, Construction of Nilpotent and Solvable Lie Algebra in Picture Fuzzy Environment, Int. J. Comput. Intell. Syst., 16 (2023), 10 pages
-
[23]
J. Lee, T. F. Edgar, Real structured singular value conditions for the strong D-stability, Systems Control Lett., 44 (2001), 273–277
-
[24]
D. O. Logofet, Svicobians of Compartment Models and the DaD-Stability of Svicobians, Dokl. Akad. Nauk, Ross. Akad. Nauk, 360 (1998), 167–170
-
[25]
J. F. Magni, C. Döll, C. Chiappa, B. Frapard, B. Girouart, Mixed μ-analysis for flexible systems. Part 1: Theory, IFAC Proc. Vol., 32 (1999), 8003–8008
-
[26]
G. Mani, A. J. Gnanaprakasam, N. Kausar, M. Munir, S. Khan, E. Ozbilge, Solving an integral equation via intuitionistic fuzzy bipolar metric spaces, Decision Making: Applications in Management and Engineering, 6 (2023), 536–556
-
[27]
G. Mani, A. J. Gnanaprakasam, N. Kausar, M. Munir, Salahuddin, Orthogonal F-contraction mapping on O-complete metric space with applications, Int. J. Fuzzy Log. Intell., 21 (2021), 243–250
-
[28]
B. M. Norboevna, R. T. Husenovich, The method of using problematic education in teaching theory of matrix to students, Academy, 4 (2020), 68–71
-
[29]
D. L. K. Oanh, L. D. Hac, D. P. Thao, S.-H. Pan, Review of Matrix Theory with Applications in Economics and Finance, Adv. Decis. Sci., 26 (2022), 1–20
-
[30]
A. Ovchinnikov, Revenue and cost management for remanufactured products, Prod. Oper. Manag., 20 (2011), 824–840
-
[31]
A. Packard, J. Doyle, The complex structured singular value, Automatica J. IFAC, 29 (1993), 71–109
-
[32]
A. Packard, M. K. H. Fan, J. Doyle, A power method for the structured singular value, In: Proceedings 0f the 27th Conference on Decision and Control, IEEE, (1988), 2132–2137
-
[33]
S. K. Prakasam, A. J. Gnanaprakasam, N. Kausar, G. Mani, M. Munir, Salahuddin, Solution of Integral Equation via Orthogonally Modified F-Contraction Mappings on O-Complete Metric-Like Space, Int. J. Fuzzy Log. Intell. Syst., 22 (2022), 287–295
-
[34]
M. U. Rehman, T. H. Rasulov, F. Amir, D-Stability, Strong D-Stability and-Values, Lobachevskii J. Math., 45 (2024), 1227–1233
-
[35]
J. R. Reimer, M. Mangel, A. E. Derocher, M. A. Lewis, Matrix methods for stochastic dynamic programming in ecology and evolutionary biology, Methods Ecol. Evol., 10 (2019), 1952–1961
-
[36]
I. M. Romanishin L. A. Sinitskii, On the Additive D-Stability of Matrices on the Basis of the Kharitonov Criterion, Mat. Zametki, 2 (2002), 265–268
-
[37]
P. Seiler, G. Balas, A. Packard, A gain-based lower bound algorithm for real and mixed μ problems, In: Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, (2006), 3548–3553
-
[38]
A. E. Steenge, R. C. Reyes, Return of the capital coefficients matrix, Econ. Syst. Res., 32 (2020), 439–450
-
[39]
G. W. Thomas, EigTool, , (2002),
-
[40]
N. L. Trefethen, Spectra and pseudospectra: the behavior of nonnormal matrices and operators, Princeton University Press, Princeton, NJ (2020)
-
[41]
C. Walker, E. Mojares, A. del Río Hernández, Role of extracellular matrix in development and cancer progression, Int. J. Mol. Sci., 19 (2018), 31 pages
-
[42]
G. R. Wang, A Cramer rule for finding the solution of a class of singular equations, Linear Algebra Appl., 116 (1989), 27–34