Analytical study of existence, uniqueness, and stability in impulsive neutral fractional Volterra-Fredholm equations
Authors
P. Raghavendran
- Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R\(\&\)D Institute of Science and Technology, Chennai-600062, Tamil Nadu, India.
Th. Gunasekar
- Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R\(\&\)D Institute of Science and Technology, Chennai-600062, Tamil Nadu, India.
- School of Artifiial Intelligence and Data Science, Indian Institute of Technology (IIT), Kalyani, Jodhpur 342030, India.
Sh. S. Santra
- Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal 741235, India.
Dumitru Baleanu
- Department of Computer Science and Mathematics, Lebanese American University, Beirut-11022801, Lebanon.
- Instiute of Space Sciences-Subsidiary of INFLPR, Magurele-Bucharest, 077125 Magurele, Romania.
D. Majumder
- Department of Mathematics, JIS College of Engineering, Kalyani, Kalyani, West Bengal 741235, India.
Abstract
This investigation focuses on an impulsive Volterra-Fredholm integro-differential equation enriched with fractional Caputo derivatives and subject to specific order conditions. The study establishes both the existence and uniqueness of analytical solutions using the Banach principle. Moreover, it reveals a distinctive outcome regarding the existence of at least one solution, supported by conditions derived from the Krasnoselskii fixed point theorem. Additionally, the paper extends its examination to impulsive neutral Volterra-Fredholm integro-differential equations, providing insights into their long-term behavior through Ulam stability. The inclusion of an illustrative example emphasizes the practical significance and reliability of the results.
Share and Cite
ISRP Style
P. Raghavendran, Th. Gunasekar, Sh. S. Santra, Dumitru Baleanu, D. Majumder, Analytical study of existence, uniqueness, and stability in impulsive neutral fractional Volterra-Fredholm equations, Journal of Mathematics and Computer Science, 38 (2025), no. 3, 313--329
AMA Style
Raghavendran P., Gunasekar Th., Santra Sh. S., Baleanu Dumitru, Majumder D., Analytical study of existence, uniqueness, and stability in impulsive neutral fractional Volterra-Fredholm equations. J Math Comput SCI-JM. (2025); 38(3):313--329
Chicago/Turabian Style
Raghavendran, P., Gunasekar, Th., Santra, Sh. S., Baleanu, Dumitru, Majumder, D.. "Analytical study of existence, uniqueness, and stability in impulsive neutral fractional Volterra-Fredholm equations." Journal of Mathematics and Computer Science, 38, no. 3 (2025): 313--329
Keywords
- Caputo fractional derivative
- Volterra-Fredholm integro-differential equation (IDE)
- Arzela-Ascoli theorem
- Banach contraction principle
- Krasnoselskii fixed point theorem
- Ulam stability
MSC
- 26A33
- 34A12
- 26D10
- 26E50
- 45G10
- 45J05
References
-
[1]
R. P. Agarwal, C. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274 (2016), 178–181
-
[2]
B. Ahmad, S. K. Ntouyas, J. Tariboon, A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory, Appl. Math. Lett., 52 (2016), 9–14
-
[3]
B. Ahmad, S. Sivasundaram, Some existence results for fractional integro-differential equations with nonlinear conditions, Commun. Appl. Anal., 12 (2008), 107–112
-
[4]
M. Ahmad, A. Zada, J. Alzabut, Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer- Hadamard type, Demonstr. Math., 52 (2019), 283–295
-
[5]
J. Alzabut, S. R. Grace, J. M. Jonnalagadda, S. S. Santra, B. Abdalla, Higher-order Nabla difference equations of arbitrary order with forcing, positive and negative terms: Non-oscillatory solutions, Axioms, 12 (2023), 14 pages
-
[6]
J. Alzabut, S. R. Grace, S. S. Santra, M. E. Samei, Oscillation criteria for even-order nonlinear dynamic equations with sublinear and superlinear neutral terms on time scales, Qual. Theory Dyn. Syst., 23 (2024), 16 pages
-
[7]
H. Balasundaram, T. Muhammad, S. S. Santra, S. Nandi, Effect of hydrocephalus in an unsteady cerebrospinal fluid influencing diffusivity, Numer. Heat Transf. B: Fundam., 1 (2024), 1–10
-
[8]
S. Begum, A. Zada, S. Saifullah, I.-L. Popa, Dynamical behavior of random fractional integro-differential equation via Hilfer fractional derivative, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 84 (2022), 137–148
-
[9]
M. Bohner, T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72–76
-
[10]
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85
-
[11]
A. Columbu, S. Frassu, G. Viglialoro, Refined criteria toward boundedness in an attraction-repulsion chemotaxis system with nonlinear productions, Appl. Anal., 103 (2024), 415–431
-
[12]
Z. Dahmani, A. Taeb, New existence and uniqueness results for high dimensional fractional differential systems, Facta Univ. Ser. Math. Inform., 30 (2015), 281–293
-
[13]
L. S. Dong, N. V. Hoa, H. Vu, Existence and Ulam stability for random fractional integro-differential equation, Afr. Mat., 31 (2020), 1283–1294
-
[14]
M. Fe˘ckan, J. Wang, M. Pospíšil, Fractional-order equations and inclusions, De Gruyter, Berlin (2017)
-
[15]
T. Gunasekar, P. Raghavendran, The Mohand transform approach to fractional integro-differential equations, J. Comput. Anal. Appl., 33 (2024), 358–371
-
[16]
T. Gunasekar, P. Raghavendran, S. S. Santra, D. Majumder, D. Baleanu, H. Balasundaram, Application of Laplace transform to solve fractional integro-differential equations, J. Math. Comput. Sci., 33 (2024), 225–237
-
[17]
T. Gunasekar, P. Raghavendran, S. S. Santra, M. Sajid, Analyzing existence, uniqueness, and stability of neutral fractional Volterra-Fredholm integro-differential equations, J. Math. Comput. Sci., 33 (2024), 390–407
-
[18]
T. Gunasekar, J. Thiravidarani, M. Mahdal, P. Raghavendran, A. Venkatesan, M. Elangovan, Study of non-linear impulsive neutral fuzzy delay differential equations with non-local conditions, Mathematics, 11 (2023), 16 pages
-
[19]
H. HamaRashid, H. M. Srivastava, M. Hama, P. O. Mohammed, E. Al-Sarairah, M. Y. Almusawa, New Numerical Results on Existence of Volterra-Fredholm Integral Equation of Nonlinear Boundary Integro-Differential Type, Symmetry, 15 (2023), 20 pages
-
[20]
H. HamaRashid, H. M. Srivastava, M. Hama, P. O. Mohammed, M. Y. Almusawa, D. Baleanu, Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type, AIMS Math., 8 (2023), 14572–14591
-
[21]
A. Hamoud, Existence and uniqueness of solutions for fractional neutral volterra-fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 321–331
-
[22]
A. A. Hamoud, K. P. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integrodifferential equations, Iran. J. Math. Sci. Inform., 17 (2022), 135–144
-
[23]
A. Hamoud, N. Mohammed, K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 361–372
-
[24]
K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 9 pages
-
[25]
M. Houas, M. E. Samei, S. S. Santra, J. Alzabut, On a Duffing-type oscillator differential equation on the transition to chaos with fractional q-derivatives, J. Inequal. Appl., 2024 (2024), 28 pages
-
[26]
J. Jayaprakash, V. Govindan, D. Gowthaman, S. Vignesh, S. S. Santra, T. Muhammad, K. Vajravelu, A numerical simulation of natural convection in a porous enclosure with nanofluid, Numer. Heat Transf. B: Appl., 1 (2024), 1–13
-
[27]
S. Ji, G. Li, Existence results for impulsive differential inclusions with nonlocal conditions, Comput. Math. Appl., 62 (2011), 1908–1915
-
[28]
S. Ji, G. Li, M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Appl. Math. Comput., 217 (2011), 6981–6989
-
[29]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[30]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages
-
[31]
T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages
-
[32]
T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150–1162
-
[33]
T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489–500
-
[34]
T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 7 pages
-
[35]
A. Ndiaye, F. Mansal, Existence and uniqueness results of Volterra-Fredholm integro-differential equations via Caputo fractional derivative, J. Math., 2021 (2021), 8 pages
-
[36]
N. Sene, A. Ndiaye, On class of fractional-order chaotic or hyperchaotic systems in the context of the Caputo fractional-order derivative, J. Math., 2020 (2020), 15 pages
-
[37]
H. M. Srivastava, R. K. Saxena, Some Volterra-type fractional integro-differential equations with a multivariable confluent hypergeometric function as their kernel, J. Integral Equations Appl., 17 (2005), 199–217
-
[38]
A. K. Tripathy S. S. Santra, Necessary and Sufficient Conditions for oscillations to a Second-order Neutral Differential Equations with Impulses, Kragujevac J. Math., 47 (2023), 81–93
-
[39]
J. Wang, L. Lv, Y. Zhou, lam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 10 pages
-
[40]
X. Wang, L. Wang, Q. Zeng, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 8 (2015), 309–314
-
[41]
J. Wu, Y. Liu, Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces, Electron. J. Differential Equations, 2009 (2009), 1–8
-
[42]
A. Zafer, Oscillation criteria for even order neutral differential equations, Appl. Math. Lett., 11 (1998), 21–25
-
[43]
Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, World Scientific, (2016)