On nonlinear dynamics in a fractional order model for antibiotic resistance
Authors
A. A. Elsadany
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
- Department of Basic Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt.
A. Elsonbaty
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt.
Abstract
This study presents a fractional-order mathematical model to address the pressing issue of global antibiotic resistance. The focus is to delve into the nonlinear dynamics of this model and comprehensively analyze the impacts of crucial factors and parameters. Our investigation includes exploring the existence, uniqueness, and positivity of the solution. We identify the equilibrium points of the model and analyze their stability. To explore the effects of parameters on the model's dynamics, we obtain stability regions, time series solutions, and phase diagrams. Numerical simulations, using the Adams-Bashforth-Moulton method, are conducted to validate the theoretical analysis results.
Share and Cite
ISRP Style
A. A. Elsadany, A. Elsonbaty, On nonlinear dynamics in a fractional order model for antibiotic resistance, Journal of Mathematics and Computer Science, 38 (2025), no. 3, 396--416
AMA Style
Elsadany A. A., Elsonbaty A., On nonlinear dynamics in a fractional order model for antibiotic resistance. J Math Comput SCI-JM. (2025); 38(3):396--416
Chicago/Turabian Style
Elsadany, A. A., Elsonbaty, A.. "On nonlinear dynamics in a fractional order model for antibiotic resistance." Journal of Mathematics and Computer Science, 38, no. 3 (2025): 396--416
Keywords
- Antibiotic resistance
- equilibrium points
- local stability
- global stability
- Caputo fractional derivative
MSC
References
-
[1]
H. Abboubakar, L. K. Kombou, A. D. Koko, H. P. E. Fouda, A. Kumar, Projections and fractional dynamics of the typhoid fever: a case study of Mbandjock in the Centre Region of Cameroon, Chaos Solitons Fractals, 150 (2021), 24 pages
-
[2]
Access to Medicine Foundation, 2012 Access to Medicine Index, , (2012),
-
[3]
E. Ahmed, A. S. Elgazzar, A. A. Elsadany, Simple mathematical models of antimicrobial resistance, J. Fract. Calc. Appl., 11 (2020), 22–25
-
[4]
E. Ahmed, A. E. Matouk, Complex dynamics of some models of antimicrobial resistance on complex networks, Math. Methods Appl. Sci., 44 (2021), 1896–1912
-
[5]
H. A. Antosiewicz, J. K. Hale, Studies in ordinary differential equations, Mathematical Association of America, California (1977)
-
[6]
F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Springer, New York (2012)
-
[7]
J. C. Butcher, Numerical methods for ordinary differential equations in the 20th century, J. Comput. Appl. Math., 125 (2000), 1–29
-
[8]
B. Da¸sba¸sı, Fractional order bacterial infection model with effects of anti-virulence drug and antibiotic, Chaos Solitons Fractals, 170 (2023), 17 pages
-
[9]
B. Da¸sba¸sı, I. Öztürk, Mathematical modelling of bacterial resistance to multiple antibiotics and immune system response, SpringerPlus, 5 (2016), 1–17
-
[10]
O. Diekmann, K. Dietz, J. Heesterbeek, The basic reproduction ratio for sexually transmitted diseases: I. theoretical considerations, Math. Biosci., 107 (1991), 325–339
-
[11]
K. Diethelm, The analysis of fractional differential equations, Springer-Verlag, Berlin (2011)
-
[12]
K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3–22
-
[13]
M. F. Elettreby, E. Ahmed, Multi-drug antimicrobial resistance model, Math. Methods Appl. Sci., 43 (2020), 10462– 10473
-
[14]
M. F. Elettreby, A. S. Alqahtani, E. Ahmed, Fractional-order model for multi-drug antimicrobial resistance, Comput. Model. Eng. Sci., 124 (2020), 665–682
-
[15]
M. F. Elettreby, A. S. Alqahtani, T. Nabil, Complex dynamical behavior of a discretize fractional-order multi-drug antimicrobial resistance model, Alex. Eng. J., 59 (2020), 3119–3131
-
[16]
A. Elsonbaty, W. Adel, A. Aldurayhim, A. El-Mesady, Mathematical modeling and analysis of a novel monkeypox virus spread integrating imperfect vaccination and nonlinear incidence rates, Ain Shams Eng. J., 15 (2024), 19 pages
-
[17]
, European Centre for Disease Prevention and Control. ECDC/EMEA Joint Technical Report, The Bacterial Challenge: Time to React., (2009),
-
[18]
A. Frei, A. D. Verderosa, A. G. Elliott, J. Zuegg, M. A. T. Blaskovich, Metals to combat antimicrobial resistance, Nat. Rev. Chem., 7 (2023), 202–224
-
[19]
R. Garrappa, Predictor-corrector PECE method for fractional differential equations, MATLAB Central File Exchange, (2011),
-
[20]
E. Ibargüen-Mondragón, S. Mosquera, M. Cerón, E. M. Burbano-Rosero, S. P. Hidalgo-Bonilla, L. Esteva, J. P. Romero-Leitón, Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations, Biosystems, 117 (2014), 60–67
-
[21]
E. Ibargüen-Mondragón, J. P. Romero-Leiton, L. Esteva, E. M. Burbano-Rosero, Mathematical modeling of bacterial resistance to antibiotics by mutations and plasmids, J. Biol. Systems, 24 (2016), 129–146
-
[22]
E. M. Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and bursting, MIT Press, Cambridge, MA (2007)
-
[23]
M. Kot, Elements of mathematical ecology, Cambridge University Press, Cambridge (2001)
-
[24]
J. P. LaSalle, The stability of dynamical systems, Society for Industrial and Applied Mathematics, Philadelphia, PA (1976)
-
[25]
J. A. Lewnard, Y. H. Grad, Vaccine waning and mumps re-emergence in the United States, Sci. Transl. Med., 10 (2018),
-
[26]
C. Li, F. Zeng, The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34 (2013), 149–179
-
[27]
W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math Anal. Appl., 332 (2007), 709–726
-
[28]
E. Massad, M. N. Burattini, F. A. B. Coutinho, An optimization model for antibiotic use, Appl. Math. Comput., 201 (2008), 161–167
-
[29]
S. M. Moghadas, Modelling the effect of imperfect vaccines on disease epidemiology, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 999–1012
-
[30]
T. Nguiwa, G. G. Kolaye, M. Justin, D. Moussa, G. Betchewe, A. Mohamadou, Dynamic study of SIAISQVR − B fractional-order cholera model with control strategies in Cameroon Far North Region, Chaos Solitons Fractals, 144 (2021), 19 pages
-
[31]
Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor’s formula, Appl. Math. Comput., 186 (2007), 286–293
-
[32]
I. Petráš, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer, London (2011)
-
[33]
J. Pieskä, E. Laitinen, A. Lapin, Predictor-corrector methods for solving continuous casting problem, In: Domain decomposition methods in science and engineering, Springer, Berlin, 40 (2005), 677–684
-
[34]
M. A. Salam, M. Y. Al-Amin, M. T. Salam, J. S. Pawar, N. Akhter, A. A. Rabaan, M. A. A. Alqumber, Antimicrobial resistance: a growing serious threat for global public health, Healthcare, 11 (2023), 20 pages
-
[35]
S. M. Salman, R. Han, Complex patterns in a space-time discrete mathematical model of antibiotic resistance in hospitals with self-diffusion, Commun. Nonlinear Sci. Numer. Simul., 127 (2023), 23 pages
-
[36]
B. Sartorius, A. P. Gray, N. D. Weaver, G. R. Aguilar, L. R. Swetschinski, K. S. Ikuta, T. Mestrovic, E. Chung, E. E. Wool, C. Han, The burden of bacterial antimicrobial resistance in the WHO African region in 2019: a cross-country systematic analysis, Lancet Glob. Health, 12 (2024), E201–E216
-
[37]
P. D. Tamma, E. L. Heil, J. A. Justo, A. J. Mathers, M. J. Satlin, R. A. Bonomo, Infectious Diseases Society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections, Clin. Infect. Dis., (2024), 56 pages
-
[38]
M. S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems, Phys. D, 237 (2008), 2628–2637
-
[39]
L. Ternent, R. J. Dyson, A.-M. Krachler, S. Jabbari, Bacterial fitness shapes the population dynamics of antibiotic-resistant and-susceptible bacteria in a model of combined antibiotic and anti-virulence treatment, J. Theor. Biol., 372 (2015), 1–11
-
[40]
P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48
-
[41]
C. Vargas-De-León, Constructions of Lyapunov functions for classics SIS, SIR and SIRS epidemic model with variable population size, Foro-Red-Mat: Rev. Electrón. Conten. Mat., 26 (2009), 1–12
-
[42]
WHO, Ten threats to global health in 2019, , (2019),
-
[43]
WHO, Antibiotic resistance, , (2023),