Application of an extended Gronwall-type inequality for a \((k,\psi)\)-Hilfer proportional fractional Ambartsumian system via nonlocal integral conditions
Volume 41, Issue 4, pp 456--486
https://dx.doi.org/10.22436/jmcs.041.04.02
Publication Date: November 21, 2025
Submission Date: January 22, 2025
Revision Date: July 24, 2025
Accteptance Date: September 12, 2025
Authors
W. Sudsutad
- Department of Statistics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand.
C. Thaiprayoon
- Research Group of Theoretical and Computation in Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
J. Kongson
- Research Group of Theoretical and Computation in Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
A. Aphithana
- Division of Mathematics, Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand.
Abstract
This work obtained a novel nonlinear coupled Ambartsumian system subject to nonlocal integral conditions with the \((k,\psi)\)-Hilfer proportional fractional operator. According to this study, we presented an extended \((k,\psi)\)-Hilfer proportional fractional Gronwall inequality. The results concerning existence and uniqueness were established by employing the fixed point theory of Banach's and Krasnosel'skii's types. Furthermore, a variety of stability in the context of Ulam-Hyers-Mittag-Leffler and Ulam-Hyers-Rassias-Mittag-Leffler were investigated. In addition, two numerical examples were demonstrated to illustrate and apply the main results by using a novel numerical technique based on decomposition formula.
Share and Cite
ISRP Style
W. Sudsutad, C. Thaiprayoon, J. Kongson, A. Aphithana, Application of an extended Gronwall-type inequality for a \((k,\psi)\)-Hilfer proportional fractional Ambartsumian system via nonlocal integral conditions, Journal of Mathematics and Computer Science, 41 (2026), no. 4, 456--486
AMA Style
Sudsutad W., Thaiprayoon C., Kongson J., Aphithana A., Application of an extended Gronwall-type inequality for a \((k,\psi)\)-Hilfer proportional fractional Ambartsumian system via nonlocal integral conditions. J Math Comput SCI-JM. (2026); 41(4):456--486
Chicago/Turabian Style
Sudsutad, W., Thaiprayoon, C., Kongson, J., Aphithana, A.. "Application of an extended Gronwall-type inequality for a \((k,\psi)\)-Hilfer proportional fractional Ambartsumian system via nonlocal integral conditions." Journal of Mathematics and Computer Science, 41, no. 4 (2026): 456--486
Keywords
- \((k,\psi)\)-Hilfer proportional fractional operator
- Gronwall inequality
- existence and uniqueness
- fixed point theorem
- Ulam-Hyers-Mittag-Leffler stability
MSC
- 26A33
- 26D10
- 34A08
- 34B10
- 33E12
References
-
[1]
W. Adel, H. Rezazadeh, M. Eslami, M. Mirzazadeh, A numerical treatment of the delayed Ambartsumian equation over large interval, J. Interdiscip. Math., 23 (2020), 1077–1091
-
[2]
S. Ahmad, A. Ullah, A. Akgül, M. De la Sen, A study of fractional order Ambartsumian equation involving exponential decay kernel, AIMS Math., 6 (2021), 9981–9997
-
[3]
A. A. Alatawi, M. Aljoufi, F. M. Alharbi, A. Ebaid, Investigation of the surface brightness model in the Milky Way via homotopy perturbation method, J. Appl. Math. Phys., 8 (2020), 434–442
-
[4]
R. M. S. Alyoubi, A. Ebaid, E. R. El-Zahar, M. D. Aljoufi, A novel analytical treatment for the Ambartsumian delay differential equation with a variable coefficient, AIMS Math., 9 (2024), 35743–35758
-
[5]
J. Alzabut, T. Abdeljawad, F. Jarad, W. Sudsutad, A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019), 12 pages
-
[6]
J. Alzabut, Y. Adjabi, W. Sudsutad, M.-U. Rehman, New generalizations for Gronwall type inequalities involving a ψ-fractional operator and their applications, AIMS Math., 6 (2021), 5053–5077
-
[7]
V. A. Ambartsumian, On the theory of brightness fluctuations in the Milky Way, C. R. (Doklady) Acad. Sci. URSS (N.S.), 44 (1944), 223–226
-
[8]
A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system,, Chaos Solitons Fractals, 102 (2017), 396–406
-
[9]
H. O. Bakodah, A. Ebaid, Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jaffari approximate method, Mathematics, 6 (2018), 10 pages
-
[10]
R. Bellman, Stability theory of differential equations, McGraw-Hill Book Co., New York-Toronto-London (1953)
-
[11]
R. Courant, Differential and integral calculus. Vol. II, John Wiley & Sons, New York (1988)
-
[12]
A. Ebaid, A. Al-Enazi, B. Z. Albalawi, M. D. Aljoufi, Accurate approximate solution of Ambartsumian delay differential equation via decomposition method, Math. Comput. Appl., 24 (2019), 9 pages
-
[13]
A. Ebaid, C. Cattani, A. S. Al Juhani, E. R. El-Zahar, A novel exact solution for the fractional Ambartsumian equation, Adv. Differ. Equ., 2021 (2021), 18 pages
-
[14]
N. Eghbali, V. Kalvandi, J. M. Rassias, A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation, Open Math., 14 (2016), 237–246
-
[15]
E. M. Elsayed, S. Manikandan, K. Kanagarajan, D. Vivek, Existence and stability for Ambartsumian equation with Ξ-Hilfer generalized proportional fractional derivative, Commun. Nonlinear Anal., 2 (2023), 1–17
-
[16]
R. George, M. Houas, M. Ghaderi, S. Rezapour, S. K. Elagan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities, Results Phys., 39 (2022), 9 pages
-
[17]
A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, New York (2003)
-
[18]
R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co., River Edge, NJ (2000)
-
[19]
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224
-
[20]
D. Jiang, C. Bai, On coupled Gronwall inequalities involving a ψ-fractional integral operator with its applications, AIMS Math., 7 (2022), 7728–7741
-
[21]
U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865
-
[22]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[23]
M. A. Krasnosel’skii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.), 10 (1955), 123–127
-
[24]
K. D. Kucche, A. D. Mali, On the nonlinear (k,Ψ)-Hilfer fractional differential equations, Chaos Solitons Fractals, 152 (2021), 14 pages
-
[25]
D. Kumar, J. Singh, D. Baleanu, S. Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 7 pages
-
[26]
E. L. Lima, Real analysis (in Portuguese), Instituto de Matemática Pura e Aplicada, CNPq, Rio de Janeiro (2004)
-
[27]
S. Manikandan, S. Sivasundaram, D. Vivek, K. Kanagarajan, Controllability and qualitative property results for Ambartsumian equation via Ξ-Hilfer generalized proportional fractional derivative on time scales, Nonlinear Stud., 29 (2022), 1233–1255
-
[28]
S. K. Ntouyas, B. Ahmad, J. Tariboon, Coupled systems of nonlinear proportional fractional differential equations of the Hilfer-type with multi-point and integro-multi-strip boundary conditions, Foundations, 3 (2023), 241–259
-
[29]
M. D. Ortigueira, G. Bengochea, A simple solution for the general fractional Ambartsumian equation, Appl. Sci., 13 (2023), 15 pages
-
[30]
J. Patade, Series solution of system of fractional order Ambartsumian equations: application in astronomy, arXiv preprint arXiv:2008.04904, (2020), 5 pages
-
[31]
J. Patade, S. Bhalekar, On analytical solution of Ambartsumian equation, Nat. Acad. Sci. Lett., 40 (2017), 291–293
-
[32]
T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300
-
[33]
A. Samadi, S. K. Ntouyas, B. Ahmad, J. Tariboon, Investigation of a nonlinear coupled (k,ψ)-Hilfer fractional differential system with coupled (k,ψ)-Riemann-Liouville fractional integral boundary conditions, Foundations, 2 (2022), 918–933
-
[34]
W. Sudsutad, J. Kongson, C. Thaiprayoon, On generalized (k,ψ)-Hilfer proportional fractional operator and its applications to the higher-order Cauchy problem, Bound. Value Probl., 2024 (2024), 32 pages
-
[35]
W. Sudsutad, C. Thaiprayoon, A. Aphithana, J. Kongson, W. Sae-dan, Qualitative results and numerical approximations of the (k,ψ)-Caputo proportional fractional differential equations and applications to blood alcohol levels model, AIMS Math., 9 (2024), 34013–34041
-
[36]
S. Theswan, S. K. Ntouyas, J. Tariboon, Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems, AIMS Math., 8 (2023), 22009–22036
-
[37]
S. M. Ulam, A collection of mathematical problems, , Interscience Publishers, New York-London (1960)
-
[38]
R. Wong, Asymptotic approximations of integrals, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001)
-
[39]
H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075–1081