Qualitative dynamics of a higher-order rational difference equation system
Authors
B. S. Alofi
- Mathematics Department, Jamoum University College, Umm Al-Qura University, Jamoum 25375, Saudi Arabia.
Abstract
This study shows the conditions for local and global asymptotic stability of
the equilibrium points in the nonlinear system of difference equations
\[
Z_{\eta+1} =\beta_{1}Y_{\eta-1}+\frac{\delta_{1}Y_{\eta-1}Z_{\eta-4}%
}{r+Y_{\eta-2}+Z_{-4}},\quad
Y_{\eta+1} =\beta_{2}Z_{\eta-1}+\frac{\delta_{2}Z_{\eta-1}Y_{\eta-4}%
}{r+Z_{\eta-2}\pm Y_{\eta-4}}.\]
The boundedness of the positive solutions of the systems is examined.
Additionally, the solutions of the systems are investigated. Numerical
examples are presented to show the outcomes.
Share and Cite
ISRP Style
B. S. Alofi, Qualitative dynamics of a higher-order rational difference equation system, Journal of Mathematics and Computer Science, 41 (2026), no. 4, 519--534
AMA Style
Alofi B. S., Qualitative dynamics of a higher-order rational difference equation system. J Math Comput SCI-JM. (2026); 41(4):519--534
Chicago/Turabian Style
Alofi, B. S.. "Qualitative dynamics of a higher-order rational difference equation system." Journal of Mathematics and Computer Science, 41, no. 4 (2026): 519--534
Keywords
- Difference equations
- solution of difference equation
- difference equations system
MSC
References
-
[1]
Y. Akrour, N. Touafek, Y. Halim, On a system of difference equations of third ordersolved in closed form, J. Innov. Appl. Math. Comput. Sci., 1 (2021), 1–15
-
[2]
M. B. Almatrafi, Solutions Structures for Some Systems of Fractional Difference Equations, Open J. Math. Anal., 3 (2019), 51–61
-
[3]
A. M. Alotaibi, M. A. El-Moneam, On the dynamics of the nonlinear rational difference equation xn+1 = αxn−m+δxn β+γxn−kxn−l(xn−k+xn−l) , AIMS Math., 7 (2022), 7374–7384
-
[4]
H. Althagafi, A. Ghezal, Analytical Study of Nonlinear Systems of Higher-Order Difference Equations: Solutions, Stability, and Numerical Simulations, Mathematics, 12 (2024), 20 pages
-
[5]
A. M. Amleh, V. Kirk, G. Ladas, On the dynamics of xη+1 = β + δxη−1 β + δxη−2 , Math. Sci. Res. Hot-Line, 5 (2001), 1–15
-
[6]
M. Bohner, T. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 58 (2015), 1445–1452
-
[7]
E. Camouzis, G. Ladas, H. D. Voulov, On the dynamics of xn+1 = α+γxn−1+δxn−2 A+xn−2 , J. Differ. Equ. Appl., 9 (2003), 731–738
-
[8]
E. Chatterjee, E. A. Grove, Y. Kostrov, G. Ladas, On the trichotomy character of xn+1 = α+γxn−1 A+Bxn+xn−2 , J. Differ. Equ. Appl., 9 (2003), 1113–1128
-
[9]
C. Çinar, On the positive solutions of the difference equation xn+1 = axn−1 1+bxnxn−1 , Appl. Math. Comput., 156 (2004), 587–590
-
[10]
E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the difference equation xn+1 = axn − bxn/(cxn − dxn−1), Adv. Differ. Equ., 2006 (2006), 10 pages
-
[11]
E .M. Elabbasy, H. El-Metwally, E. M. Elsayed, Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Math. J., 53 (2007), 89–100
-
[12]
E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the difference equation xn+1 = αxn−k β+γ Qk i=0 xn−i , J. Concr. Appl. Math., 5 (2007), 101–113
-
[13]
E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Qualitative behavior of higher order difference equation, Soochow J. Math., 33 (2007), 861–873
-
[14]
H. El-Metwally, E. A. Grove, G. Ladas, A global convergence result with applications to periodic solutions, J. Math. Anal. Appl., 245 (2000), 161–170
-
[15]
E. M. Elsayed, Qualitative behavior of a rational recursive sequence, Indag. Math. (N.S.), 19 (2008), 189–201
-
[16]
E. M. Elsayed, B. S. Alofi, Dynamics and solutions structures of nonlinear system of difference equations, Math. Methods Appl. Sci., 2022 (2022), 1–18
-
[17]
E. M. Elsayed, B. S. Alofi, The periodic nature and expression on solutions of some rational systems of difference equations, Alex. Eng. J., 74 (2023), 269–283
-
[18]
E. M. Elsayed, B. S. Alofi, A. Q. Khan, Qualitative Behavior of Solutions of Tenth-Order Recursive Sequence Equation, Math. Probl. Eng., 2022 (2022), 10 pages
-
[19]
E. M. Elsayed, B. S. Alofi, A. Q. Khan, Solution expressions of discrete systems of difference equations, Math. Probl. Eng., 2022 (2022), 14 pages
-
[20]
E. M. Elsayed, B. S. Aloufi, O. Moaaz, The behavior and structures of solution of fifth-order rational recursive sequence, Symmetry, 14 (2022), 18 pages
-
[21]
E. M. Elsayed, A. Alshareef, F. Alzahrani, Qualitative behavior and solution of a system of three-dimensional rational difference equations, Math. Methods Appl. Sci., 45 (2022), 5456–5470
-
[22]
E. M. Elabbasy, C. Cesarano, O. Bazighifan, O. Moaaz, Asymptotic and oscillatory behavior of solutions of a class of higher order differential equation, Symmetry, 11 (2019), 9 pages
-
[23]
M. Folly-Gbetoula, D. Nyirenda, A Simplification and Generalization of Elsayed and Ibrahim’s Two-Dimensional System of Third-Order Difference Equations, Symmetry, 14 (2022), 18 pages
-
[24]
E. A. Grove, G. Ladas, L. C. McGrath, H. A. El-Metwally, On the difference equation yη+1 = yη−(2k+1) + p yη−(2k+1) + qyη−2l , Proceedings of the 6th ICDE, CRC Press, Boca Raton, FL, (2004), 433–452
-
[25]
A. Khaliq, SK. S. Hassan, On a new class of rational difference equation zn+1 = azn + bzn−k + α+βzn−k A+Bzn−k , J. Appl. Nonlinear Dyn., 8 (2019), 569–584
-
[26]
V. L. Koci´c, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers Group, Dordrecht (1993)
-
[27]
M. R. S. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall, CRC, New York (2001)
-
[28]
T. Li, D. Acosta-Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent δ-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), 19 pages
-
[29]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages
-
[30]
A. Muhib, O. Moaaz, C. Cesarano, S. Askar, E. M. Elabbasy, Neutral Differential Equations of Fourth-Order: New Asymptotic Properties of Solutions, Axioms, 11 (2022), 11 pages
-
[31]
B. O˘ gul, D. Sim¸sek T. F. Ibrahim, Solution of rational difference equation, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 28 (2021), 125–141
-
[32]
A. Sanbo, E. M. Elsayed, Some properties of the solutions of the difference equation xn+1 = axn + bxnxn−4 cxn−3+dxn−4 , Open J. Discrete Appl. Math., 2 (2019), 31–47
-
[33]
N. Touafek, E. M. Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Model., 55 (2012), 1987–1997
-
[34]
I. Yalçinkaya, C. Cinar, R. Karatas, On the positive solutions of the difference equation system xη+1 = m/yη, yη+1 = pyη/xη−1yη−1 , J. Inst. Math. Comp. Sci., 18 (2005), 135–136
-
[35]
X.-X. Yan,W.-T. Li, Global attractivity for a class of nonlinear difference equations, Soochow J. Math., 29 (2003), 327–338
-
[36]
X. Yang, W. Su, B. Chen, G. M. Megson, D. J. Evans, On the recursive sequence xn = axn−1+bxn−2 c+dxn−1xn−2 , Appl. Math. Comp., 162 (2005), 1485–1497
-
[37]
Y. Yazlik, M. Kara, On a solvable system of difference equations of higher-order with period two coefficients, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68 (2019), 1675–1693
-
[38]
Q. Zhang, L. Yang, J. Liu, Dynamics of a system of rational third order difference equation, Adv. Differ. Equ., 2012 (2012), 6 pages