A New Modified Approach for Solving Seven-order Sawada-kotara Equations
-
3814
Downloads
-
4266
Views
Authors
Masoud Saravi
- Department of mathematics, Islamic Azad University, Nour Branch, Nour, Iran.
Ali Nikkar
- Department of Civil Engineering, University of Tabriz, Tabriz, Iran.
Martin Hermaan
- Fakultätfür Mathematik und Informatic, Friedrich-Schiller-Universität Jena, Germany.
Javad Vahidi
- Department of mathematics, Iran University of Science and Technology, Tehran, Iran.
Reza Ahari
- School of Electrical and Computer Engineering, University of Shiraz, Shiraz, Iran.
Abstract
Herein, Reconstruction of Variational Iteration Method (RVIM) is used for computing solutions of the seventh-order Sawada-Kotera equation (sSK) and a Lax’s seventh order KdV equations (LsKdV). The results are compared with the Adomian decomposition method (ADM) and the known analytical solutions. Results obtained expose effectiveness and capability of this method to solve the seven-order Sawada-Kotera (sSK) and a Lax's seven-order KdV (LsKdV) equations.
Share and Cite
ISRP Style
Masoud Saravi, Ali Nikkar, Martin Hermaan, Javad Vahidi, Reza Ahari, A New Modified Approach for Solving Seven-order Sawada-kotara Equations, Journal of Mathematics and Computer Science, 6 (2013), no. 3, 230-237
AMA Style
Saravi Masoud, Nikkar Ali, Hermaan Martin, Vahidi Javad, Ahari Reza, A New Modified Approach for Solving Seven-order Sawada-kotara Equations. J Math Comput SCI-JM. (2013); 6(3):230-237
Chicago/Turabian Style
Saravi, Masoud, Nikkar, Ali, Hermaan, Martin, Vahidi, Javad, Ahari, Reza. "A New Modified Approach for Solving Seven-order Sawada-kotara Equations." Journal of Mathematics and Computer Science, 6, no. 3 (2013): 230-237
Keywords
- Reconstruction of Variational Iteration Method (RVIM)
- seven-order Sawada-Kotera (sSK)
- Lax's seven-order KdV (LsKdV)
- Adomian decomposition method (ADM).
MSC
References
-
[1]
J. Mosler, M. Ortiz, On the numerical implementation of variational arbitrary Lagrangian–Eulerian (VALE) formulations, International Journal for Numerical Methods in Engineering, 67(9) (2006), 1272–1289
-
[2]
P. Thoutireddy, M. Ortiz, Variational r-adaption and shape-optimization method for finite-deformation elasticity, International Journal for Numerical Methods in Engineering, 61(1) (2004), 1–21
-
[3]
J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 167 (1998), 57–68
-
[4]
R. Seaadati, M. Dehghan, S. M. Vaezpour, M. Saravi, The convergence of He’s variational iteration method for following integral equations, Computers & Mathematics with Applications, 58 (2009), 2167 – 2171
-
[5]
A. Nikkar, M. Mighani, Application of He’s variational iteration method for solving seventh-order differential equations , American Journal of Computational and Applied Mathematics, 2(1) (2012), 37-40
-
[6]
J. H. He, Approximate solution of nonlinear differential equations with convolution product nonlinearities, Computer Methods in Applied Mechanics and Engineering, 167 (1998), 69–73
-
[7]
M. A. Abdou, A. A. Soliman, Variational iteration method for solving Burgers’ and coupled Burgers’ equation, J. Comput. Appl. Math., 181 (2005), 245–251
-
[8]
M. Saravi, M. Hermann, D. Kaiser , Solution of Bratu’s Equation by He's Variational Iteration Method, , American Journal of Computational and Applied Mathematics, 3(1) (2013), 46-48
-
[9]
J. H. He , Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals, 19 (2004), 847–851
-
[10]
S. Momani, S. Abusaad, Application of He’s variational-iteration method to Helmholtz equation , Chaos Solitons Fractals, 27(5) (2005), 1119–1123
-
[11]
S. Abbasbandy, Numerical solution of nonlinear Klein–Gordon equations by variational iteration method, International Journal for Numerical Methods in Engineering, 70 (2007), 876–881
-
[12]
G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston (1994)
-
[13]
G. Adomian, A review of the decomposition method in applied mathematics, Journal of Math. Anal. Appl., 135 (1988), 501–544
-
[14]
M. Saravi, M. Hermann, H. Ebrahimi Khah, The comparison of homotopy perturbation method with finite difference method for determination of maximum beam deflection, Journal of Theoretical and Applied Physics, 7:8, doi:10.1186/2251-7235-7-8. (2013)
-
[15]
A. Nikkar, S. Esmaeilzade Toloui, K. Rashedi, H. R. Khalaj Hedayati , Application of energy balance method for a conservative X1/3 force nonlinear oscillator and the Doffing equations, International Journal of Numerical Methods and Applications, 5(1) (2011), 57-66
-
[16]
Y. Khan, R. Taghipour, M. Falahian, A. Nikkar, A new approach to modified regularized long wave equation , Neural Comput & Applic, DOI 10.1007/s00521-012-1077-0. (2012)
-
[17]
E. Hesameddini, H. Latifizadeh, Reconstruction of Variational Iteration Algorithms using Laplace Transform , Internat. J. Nonlinear Sci. Numer. Simulation, 10(10) (2009), 1365-1370
-
[18]
A. Nikkar, Z. Mighani, S. M. Saghebian, S. B. Nojabaei, M. Daie , Developmenalidation of an Analytical Method to the Solutiont and V of Modelling the Pollution of a System of Lakes, Research Journal of Applied Sciences, Engineering and Technology, 5(1) (2013), 296-302
-
[19]
S. M. El-Sayed, D. Kaya, An application of the ADM to seven order Sawada-Kotera equations, Appl. Math. Comput., 157 (2004), 93–101
-
[20]
W. Hereman, P. P. Banerjee, A. Korpel, G. Assanto, A. Van Immerzeele, A. Meerpoel , Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method, J. Phys. A: Math. Gen., 19 (1986), 607-628
-
[21]
E. J. Parkes, B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun., 98 (1996), 288–300
-
[22]
G. Adomian , Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, (1994)
-
[23]
A. M. Wazwaz, The variational iteration method: A powerful scheme for handling Linear and nonlinear diffusion equations , Computers and Mathematics with Applications, 54(7) (2007), 933-939
-
[24]
A. Nikkar, A new approach for solving Gas dynamics equation, Acta Technica Corviniensis–Bulletin of Engineering, 4 (2012), 113-116
-
[25]
A. Nikkar, J. Vahidi, M. Jafarnejad Ghomi, M. Mighani, Reconstruction of variation Iteration Method for Solving Fifth Order Caudrey-Dodd-Gibbon (CDG) Equation, International journal of Science and Engineering Investigations, 1(6) (2013), 38-41
-
[26]
S. Ghasempoor, J. Vahidi, A. Nikkar, M. Mighani, Analytical approach to some highly nonlinear equations by means of the RVIM, Res. J. Appl. Sci. Eng. Technol., 5(1) (2013), 296-302