Existence of Positive Solutions for Third-order Boundary Value Problems
-
2776
Downloads
-
3918
Views
Authors
N. Nyamoradi
- Department of Mathematics, Faculty of Sciences Razi University, 67149 Kermanshah, Iran
Abstract
In this work, by employing the Guo-Krasnoselskii fixed point theorem, we study the existence
of positive solutions to the third-order two-point non-homogeneous boundary value problem
\[
\begin{cases}
-u'''(t)=a(t)f(t,v(t)),\\
-v'''(t)=b(t)h(t,u(t)),\\
u(0)=u'(0)=0, \alpha u'(1)+\beta u''(1)=0,\\
v(0)=v'(0)=0, \alpha v'(1)+\beta v''(1)=0,
\end{cases}
\]
where \(\alpha\geq 0\) and \(\beta\geq 0\) with \(\alpha+\beta> 0\) are constant.
Share and Cite
ISRP Style
N. Nyamoradi, Existence of Positive Solutions for Third-order Boundary Value Problems, Journal of Mathematics and Computer Science, 4 (2012), no. 1, 8--18
AMA Style
Nyamoradi N., Existence of Positive Solutions for Third-order Boundary Value Problems. J Math Comput SCI-JM. (2012); 4(1):8--18
Chicago/Turabian Style
Nyamoradi, N.. "Existence of Positive Solutions for Third-order Boundary Value Problems." Journal of Mathematics and Computer Science, 4, no. 1 (2012): 8--18
Keywords
- Positive solution
- Two-point boundary value problem
- Fixed point theorem.
MSC
References
-
[1]
D. R. Anderson, Green's function for a third- order generalized right focal problem, Math. Anal. Appl., 288 (2003), 1--14
-
[2]
D. R. Anderson, J. M. Davis, Multiple solutions and eigenvalues for third-order right focal boundary value problems, J. Math. Anal. Appl., 267 (2002), 135--157
-
[3]
Z. Bai, X. Fei, Existence of triple positive solutions for a third order generalized right focal problem, Math. Inequal. Appl., 9 (2006), 437--444
-
[4]
A. Boucherif, N. Al-Malki, Nonlinear three-point third order boundary value problems, Appl. Math. Comput., 190 (2007), 1168--1177
-
[5]
J. R. Graef, B. Yang, Multiple positive solutions to a three point third order boundary value problem, Proceedings of the Fifth International Conference on Dynamical Systems and Differential Equations, 2005 (2005), 337--344
-
[6]
M. R. Grossinho, F. M. Minhos, Existence result for some third order separated boundary value problems, Nonlinear. Anal., 47 (2001), 2407--2418
-
[7]
D. Guo, V. Lakshmikantham, Nonlinear problem in Abstract Cones, Academic Press, New York (1988)
-
[8]
L. J. Guo, J. P. Sun, Ya H. Zhao, Existence of positive solutions for nonlinear third-order three-point boundary value problems, Nonlinear Anal., 68 (2008), 3151--3158
-
[9]
L. Hu, L. L. Wang, Multiple positive solutions of boundary value problems for systems of non-linear second-order differential equations, J. Math. Anal. Appl., 335 (2007), 1052--1060
-
[10]
M. A. Krasnoselskii, Positive solutions of operator equations, Noordhoff, Groningen (1964)
-
[11]
R. W. Leggett, L. R. Williams, Multiple positive fixed point of nonlinear operators on orderd Banach space, Indiana Univ. Math. J., 28 (1979), 673--688
-
[12]
Y. Li, Y. Guo, G. Li, Existence of positive solutions for systems of nonlinear third-order differential equations, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 3792--3797
-
[13]
Y. P. Sun, Positive solutions of singular third-order three-point boundary value problem, J. Math. Anal. Appl., 306 (2005), 589--603
-
[14]
Q. Yao, The existence and multiplicity of positive solutions of a third-order three-point boundary value problem, Acta Math. Appl. Sin., 19 (2003), 117--122
-
[15]
H. Yu, L. Haiyan, Y. Liu, Multiple positive solutions to third-order three-point singular semipositone boundary value problem, Proceedings Mathematical Sciences, 114 (2004), 409--422