Characterizations of upper and lower \(\alpha(\mu_X,\mu_Y)\)-continuous multifunctions
-
2365
Downloads
-
4426
Views
Authors
Napassanan Srisarakham
- Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand.
Chawalit Boonpok
- Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand.
Abstract
A new class of multifunctions, called upper (lower) \(\alpha(\mu_X,\mu_Y)\)-continuous multifunctions, has been defined and studied.
Some characterizations and several properties concerning upper (lower) \(\alpha(\mu_X,\mu_Y)\)-continuous multifunctions are obtained.
Share and Cite
ISRP Style
Napassanan Srisarakham, Chawalit Boonpok, Characterizations of upper and lower \(\alpha(\mu_X,\mu_Y)\)-continuous multifunctions, Journal of Mathematics and Computer Science, 17 (2017), no. 2, 255-265
AMA Style
Srisarakham Napassanan, Boonpok Chawalit, Characterizations of upper and lower \(\alpha(\mu_X,\mu_Y)\)-continuous multifunctions. J Math Comput SCI-JM. (2017); 17(2):255-265
Chicago/Turabian Style
Srisarakham, Napassanan, Boonpok, Chawalit. "Characterizations of upper and lower \(\alpha(\mu_X,\mu_Y)\)-continuous multifunctions." Journal of Mathematics and Computer Science, 17, no. 2 (2017): 255-265
Keywords
- Generalized topological space
- \(\mu-\alpha\)-open
- upper \(\alpha(\mu_X،\mu_Y)\)-continuous multifunction
- lower \(\alpha(\mu_X،\mu_Y)\)-continuous multifunction.
MSC
References
-
[1]
M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, \(\beta\)-open sets and \(\beta\)-continuous mapping, Bull. Fac. Sci. Assiut Univ. A, 12 (1983), 77–90.
-
[2]
M. E. Abd El-Monsef, A. A. Nasef, On multifunctions, Chaos Solitons Fractals, 12 (2011), 2387–2394.
-
[3]
D. Andrijević, Semi-preopen sets, Math. Vesnik, 38 (1986), 24–32.
-
[4]
C. Boonpok, On upper and lower \(\beta(\mu_X,\mu_Y)\)-continuous multifunctions, Int. J. Math. Math. Sci., 2012 (2012 ), 17 pages.
-
[5]
Á . Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357.
-
[6]
Á . Császár, \(\gamma\)-connected sets , Acta Math. Hungar., 101 (2003), 273–279.
-
[7]
Á . Császár, Extremally disconnected generalized topologies , Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 47 (2004), 91–96.
-
[8]
Á . Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53–66.
-
[9]
Á . Császár, Further remarks on the formula for \(\gamma\)-interior, Acta Math. Hungar., 113 (2006), 325–332.
-
[10]
Á . Császár, Modification of generalized topologies via hereditary classes , Acta Math. Hungar., 115 (2007), 29–36.
-
[11]
Á . Császár, \(\delta\)- and \(\theta\)-modifications of generalized topologies, Acta Math. Hungar., 120 (2008), 275–279.
-
[12]
Á . Császár, Product of generalized topologies, Acta Math. Hungar., 123 (2009), 127–132.
-
[13]
A. Deb Ray, R. Bhowmick, \(\mu\)-paracompact and \(g_\mu\)-paracompact generalized topological spaces, Hacet. J. Math. Stat., 45 (2016), 447–453.
-
[14]
A. Kanibir, I. L. Reilly, Generalized continuity for multifunctions, Acta Math. Hungar., 122 (2009), 283–292.
-
[15]
N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
-
[16]
M. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
-
[17]
T. Neubrunn, Strongly quasi-continuous multivalued mappings, General topology and its relations to modern analysis and algebra, VI, Prague, (1986), 351–359, Res. Exp. Math., Heldermann, Berlin (1988)
-
[18]
O. Njåstad, On some classes of nearly open sets , Pacific J. Math., 15 (1965), 961–970.
-
[19]
T. Noiri, V. Popa, Almost weakly continuous multifunctions, Demonstratio Math., 26 (1993), 363–380.
-
[20]
T. Noiri, V. Popa, On upper and lower almost \(\beta\)-continuous multifunctions, Acta Math. Hungar., 82 (1999), 57–73.
-
[21]
J. H. Park, B. Y. Lee, M. J. Son, On upper and lower \(\delta\)-precontinuous multifunctions, Chaos Solitons Fractals, 19 (2004), 1231–1237.
-
[22]
V. I. Ponomarev, Properties of topological spaces preserved under multivalued continuous mapping on compacta, Amer. Math. Soc. Translations, 38 (1964), 441–446.
-
[23]
V. Popa, Sur certaines formes faibles de continuité pour les multifonctions, (French) [[Some weak forms of continuity for multifunctions]] Rev. Roumaine Math. Pures Appl., 30 (1985), 539–546.
-
[24]
V. Popa, Some properties of \(H\)-almost continuous multifunctions , Problemy Mat., 10 (1990), 9–26.
-
[25]
V. Popa, T. Noiri, On upper and lower \(\alpha\)-continuous multifunctions, Math. Slovaca, 43 (1993), 477–491.
-
[26]
V. Popa, T. Noiri, On upper and lower almost \(\alpha\)-continuous multifunctions , Demonstratio Math., 29 (1996), 381–396.
-
[27]
V. Popa, T. Noiri, On upper and lower \(\beta\)-continuous multifunctions, Real Anal. Exchange, 22 (1996/97), 362–376.
-
[28]
V. Popa, T. Noiri, On upper and lower weakly \(\alpha\)-continuous multifunctions, Novi Sad J. Math., 32 (2002), 7–24.
-
[29]
B. Roy, On a type of generalized open sets, Appl. Gen. Topol. , 12 (2011), 163–173.
-
[30]
M. S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hungar., 131 (2011), 110–121.
-
[31]
R.-X. Shen, A note on generalized connectedness, Acta Math. Hungar., 122 (2009), 231–235.
-
[32]
R.-X. Shen, Remarks on products of generalized topologies, Acta Math. Hungar., 124 (2009), 363–369.