Asymptotic behavior of discrete semigroups of bounded linear operators over Banach spaces
-
2491
Downloads
-
4238
Views
Authors
Shuhong Tang
- School of Information and Control Engineering, Weifang University, Weifang, Shandong 261061, P. R. China.
Akbar Zada
- Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan.
Habiba Khalid
- Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan.
Tongxing Li
- LinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Linyi University, Linyi, Shandong 276005, P. R. China.
Abstract
Assume that \(\vartheta_j\) is the solution of the nonhomogeneous Cauchy problem
\[\vartheta_{j+1}=\rho(1)\vartheta_j+f(j+1),\quad \vartheta_0=0,\]
where \(\rho(1)\) is the algebraic generator of the discrete semigroup \(\textbf{T}=\{\rho(j): j\in \mathbb{Z}_+\}\) acting on a complex Banach space \(\Delta\). Suppose
further that \(\textbf{AA}\textbf{P}_0^r(\mathbb{Z}_+,\Delta)\) is the space of asymptotically almost periodic sequences with relatively compact ranges. We prove
that the system
\[u_{j+1}=\rho(1)u_j\]
is uniformly exponentially stable if and only if for each \(f\in \textbf{AA}\textbf{P}_0^r(\mathbb{Z}_+,\Delta)\) the solution \(\vartheta_j\in \textbf{AA}\textbf{P}_0^r(\mathbb{Z}_+,\Delta)\) .
Share and Cite
ISRP Style
Shuhong Tang, Akbar Zada, Habiba Khalid, Tongxing Li, Asymptotic behavior of discrete semigroups of bounded linear operators over Banach spaces, Journal of Mathematics and Computer Science, 17 (2017), no. 2, 301-307
AMA Style
Tang Shuhong, Zada Akbar, Khalid Habiba, Li Tongxing, Asymptotic behavior of discrete semigroups of bounded linear operators over Banach spaces. J Math Comput SCI-JM. (2017); 17(2):301-307
Chicago/Turabian Style
Tang, Shuhong, Zada, Akbar, Khalid, Habiba, Li, Tongxing. "Asymptotic behavior of discrete semigroups of bounded linear operators over Banach spaces." Journal of Mathematics and Computer Science, 17, no. 2 (2017): 301-307
Keywords
- Banach space
- difference equation
- uniform exponential stability
- almost periodic sequence
- relatively compact
MSC
References
-
[1]
N. Ahmad, H. Khalid, A. Zada, Uniform exponential stability of discrete semigroup and space of asymptotically almost periodic sequences, Z. Anal. Anwend., 34 (2015), 477–484.
-
[2]
S. Balint, On the Perron–Bellman theorem for systems with constant coefficients, An. Univ. Timişoara Ser. Ştiinţ. Mat., 21 (1983), 3–8.
-
[3]
A. S. Besicovitch, Almost periodic functions, Dover Publications, Inc., New York (1955)
-
[4]
C. Buşe, On the Perron–Bellman theorem for evolutionary processes with exponential growth in Banach spaces, New Zealand J. Math., 27 (1998), 183–190.
-
[5]
C. Buşe, D. Barbu, Some remarks about the Perron condition for \(C_0\)-semigroups, An. Univ. Timişoara Ser. Mat.-Inform., 35 (1997), 3–8.
-
[6]
C. Buşe, A. Khan, G. Rahmat, A. Tabassum, Uniform exponential stability for discrete non-autonomous systems via discrete evolution semigroups, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 57 (105) (2014), 193–205.
-
[7]
C. Buşe, A. Zada, Dichotomy and boundedness of solutions for some discrete Cauchy problems, Topics in operator theory, Volume 2, Systems and mathematical physics, Oper. Theory Adv. Appl., Birkhäuser Verlag, Basel , 203 (2010), 165– 174.
-
[8]
C. Corduneanu, Almost periodic oscillations and waves, Springer, New York (2009)
-
[9]
Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Translated from the Russian by S. Smith, Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I. (1974)
-
[10]
G. Greiner, J. Voigt, M. Wolff, On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory, 5 (1981), 245–256.
-
[11]
A. Khan, G. Rahmat, A. Zada, On uniform exponential stability and exact admissibility of discrete semigroups, Int. J. Differ. Equ., 2013 (2013 ), 4 pages.
-
[12]
M. G. Kreĭn, On some questions related to the ideas of Lyapunov in the theory of stability, (Russian) Uspehi Matem. Nauk (N. S.), 3 (1948), 166–169.
-
[13]
Vu Quoc Phong, On stability of \(C_0\)-semigroups, Proc. Amer. Math. Soc., 129 (2001), 2871–2879.
-
[14]
M. Reghiş, C. Buşe, On the Perron–Bellman theorem for \(C_0\)-semigroups and periodic evolutionary processes in Banach spaces, Ital. J. Pure Appl. Math., 4 (1998), 155–166.
-
[15]
J. M. A. M. van Neerven, Individual stability of \(C_0\)-semigroups with uniformly bounded local resolvent, Semigroup Forum, 53 (1996), 155–161.
-
[16]
J. van Neerven, The asymptotic behaviour of semigroups of linear operators, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel (1996)
-
[17]
Y.-F. Wang, A. Zada, N. Ahmad, D. Lassoued, T.-X. Li, Uniform exponential stability of discrete evolution families on space of p-periodic sequences, Abstr. Appl. Anal., 2014 (2014 ), 4 pages.
-
[18]
A. Zada, A characterization of dichotomy in terms of boundedness of solutions for some Cauchy problems, Electron. J. Differential Equations, 2008 (2008 ), 5 pages.
-
[19]
A. Zada, N. Ahmad, I. U. Khan, F. M. Khan, On the exponential stability of discrete semigroups, Qual. Theory Dyn. Syst., 14 (2015), 149–155.