A Survey of Hierarchical Clustering Algorithms
-
10477
Downloads
-
8192
Views
Authors
Marjan Kuchaki Rafsanjani
- Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran.
Zahra Asghari Varzaneh
- Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran.
Nasibeh Emami Chukanlo
- Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran.
Abstract
Clustering algorithms classify data points into meaningful groups based on their similarity to
exploit useful information from data points. They can be divided into categories: Sequential
algorithms, Hierarchical clustering algorithms, Clustering algorithms based on cost function
optimization and others. In this paper, we discuss some hierarchical clustering algorithms and their
attributes, and then compare them with each other.
Share and Cite
ISRP Style
Marjan Kuchaki Rafsanjani, Zahra Asghari Varzaneh, Nasibeh Emami Chukanlo, A Survey of Hierarchical Clustering Algorithms , Journal of Mathematics and Computer Science, 5 (2012), no. 3, 229 - 240
AMA Style
Rafsanjani Marjan Kuchaki, Varzaneh Zahra Asghari, Chukanlo Nasibeh Emami, A Survey of Hierarchical Clustering Algorithms . J Math Comput SCI-JM. (2012); 5(3):229 - 240
Chicago/Turabian Style
Rafsanjani, Marjan Kuchaki, Varzaneh, Zahra Asghari, Chukanlo, Nasibeh Emami. "A Survey of Hierarchical Clustering Algorithms ." Journal of Mathematics and Computer Science, 5, no. 3 (2012): 229 - 240
Keywords
- Clustering
- Hierarchical clustering algorithms
- Complexity.
MSC
References
-
[1]
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: A review, ACM Computing Surveys, 31 (1999), 264-323.
-
[2]
N. A. Yousri, M. S. Kamel, M. A. Ismail, A distance-relatedness dynamic model for clustering high dimensional data of arbitrary shapes and densities, Pattern Recognition, 42 (2009), 1193- 1209.
-
[3]
K. Koutroumbas, S. Theodoridis, Pattern Recognition, Academic Press, (2009)
-
[4]
M. Kantardzic , Data Mining: Concepts, Models, Methods, and Algorithms, John Wiley & Sons, (2003)
-
[5]
R. Capaldo, F. Collova, Clustering: A survey, Http://uroutes.blogspot.com, (2008)
-
[6]
D. T. Pham, A. A. Afify, Engineering applications of clustering techniques, Intelligent Production Machines and Systems, (2006), 326-331.
-
[7]
L. Feng, M-H Qiu, Y-X. Wang, Q-L. Xiang, Y-F. Yang, K. Liu, A fast divisive clustering algorithm using an improved discrete particle swarm optimizer, Pattern Recognition Letters, 31 (2010), 1216-1225.
-
[8]
R. Gil-García, A. Pons-Porrata, Dynamic hierarchical algorithms for document clustering, Pattern Recognition Letters, 31 (2010), 469-477.
-
[9]
S. Guha, R. Rastogi, K. Shim, CURE: An efficient clustering algorithm for large databases, Information Systems, 26 (2001), 35-58.
-
[10]
J. A. S. Almeida, L. M. S. Barbosa, A. A. C. C. Pais, S. J. Formosinho, Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering, Chemometrics and Intelligent Laboratory Systems, 87 (2007), 208-217.
-
[11]
M. Charikar, C. Chekuri, T. Feder, R. Motwani, Incremental Clustering and Dynamic Information Retrieval, Proceeding of the ACM Symposium on Theory of Computing, (1997), 626- 634.
-
[12]
T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient clustering method for very large databases, Proceeding of the ACM SIGMOD Workshop on Data Mining and Knowledge Discovery, (1996), 103-114.
-
[13]
J. Harrington, M. Salibián-Barrera, Finding approximate solutions to combinatorial problems with very large data sets using BIRCH, Computational Statistics and Data Analysis, 54 (2010), 655-667.
-
[14]
M. Dutta, A. Kakoti Mahanta, A. K. Pujari , QROCK: A quick version of the ROCK algorithm for clustering of categorical data, Pattern Recognition Letters, 26 (2005), 2364-2373.
-
[15]
S. Guha, R. Rastogi, K. Shim, ROCK: A robust clustering algorithm for categorical attributes, Information Systems, 25 (2000), 345-36
-
[16]
G. Karypis, E. H. Han, V. Kumar, CHAMELEON: Hierarchical clustering using dynamic modeling, IEEE Computer, 32 (1999), 68-75.
-
[17]
Y. Song, S. Jin, J. Shen, A unique property of single-link distance and its application in data clustering, Data & Knowledge Engineering, 70 (2011), 984-1003.
-
[18]
D. Krznaric, C. Levcopoulos, Optimal algorithms for complete linkage clustering in d dimensions, Theoretical Computer Science, 286 (2002), 139-149.
-
[19]
P. A. Vijaya, M. Narasimha Murty, D. K. Subramanian, Leaders–Subleaders: An efficient hierarchical clustering algorithm for large data sets, Pattern Recognition Letters, 25 (2004), 505- 513.
-
[20]
V. S. Ananthanarayana, M. Narasimha Murty, D. K. Subramanian, Rapid and Brief Communication Efficient clustering of large data sets, Pattern Recognition, 34 (2001), 2561-2563.