A New Method for Clustering in Credit Scoring Problems
-
7372
Downloads
-
5403
Views
Authors
Mohammad Reza Gholamian
- School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
Saber Jahanpour
- Department of financial management, Shahid Beheshti University, Tehran, Iran.
Seyed Mahdi Sadatrasoul
- School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
Abstract
Due to the recent financial crisis and regulatory concerns of Basel II, credit risk assessment has become one of the most important topics in the financial risk management. Quantitative credit scoring models are widely used to assess credit risk in financial institutions. In this paper we introduce Time Adaptive self organizing Map Neural Network to cluster creditworthy customers against non credit worthy ones. We test this Neural Network on Australian credit data set and compare the results with other clustering Algorithm’s include K-means, PAM, SOM against different internal and external measures. TASOM has the best performance in clusters customers.
Share and Cite
ISRP Style
Mohammad Reza Gholamian, Saber Jahanpour, Seyed Mahdi Sadatrasoul, A New Method for Clustering in Credit Scoring Problems, Journal of Mathematics and Computer Science, 6 (2013), no. 2, 97-106
AMA Style
Gholamian Mohammad Reza, Jahanpour Saber, Sadatrasoul Seyed Mahdi, A New Method for Clustering in Credit Scoring Problems. J Math Comput SCI-JM. (2013); 6(2):97-106
Chicago/Turabian Style
Gholamian, Mohammad Reza, Jahanpour, Saber, Sadatrasoul, Seyed Mahdi. "A New Method for Clustering in Credit Scoring Problems." Journal of Mathematics and Computer Science, 6, no. 2 (2013): 97-106
Keywords
- Credit Scoring
- Banking Industry
- Clustering
- Time adaptive neural network
MSC
References
-
[1]
S. S. Haykin , Neural networks and learning machines, Vol. 3, Prentice Hall (2009)
-
[2]
N. C. Hsieh, , Expert Systems with Applications, 28(4) (2005), 655
-
[3]
N. C. Hsieh, L. P. Hung, , Expert Systems with Applications, 37(1) (2010), 534
-
[4]
J. Huysmans, , Expert Systems with Applications, 30(3) (2006), 479
-
[5]
T. Kohonen, , Proceedings of the IEEE, 78(9) (1990), 1464
-
[6]
P. N. Tan, M. Steinbach, V. Kumar, Introduction to data mining, Pearson Addison Wesley , Boston (2006)
-
[7]
H. Shah-Hosseini, R. Safabakhsh, , IEEE Transactions on, 33(2) (2003), 271
-
[8]
J. K. Jain, M. N. Murty, P. J. Flynn , , ACM computing surveys (CSUR), 31(3) (1999), 264
-
[9]
P. H. A. Sneath, R. R. Sokal, Numerical taxonomy. The principles and practice of numerical classification, , (1973)
-
[10]
J. H. Jr. Ward, , Journal of the American statistical association, (1963), 236
-
[11]
M. Kuchaki Rafsanjani, Z. Asghari Varzaneh, N. Emami Chukanlo, , The Journal of Mathematics and Computer Science, 5(3) (2012), 229
-
[12]
R. Maghsoudi , , The Journal of Mathematics and Computer Science, 2(2) (2011), 329
-
[13]
J. A. Hartigan, M. A. Wong, , Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1) (1979), 100
-
[14]
B. Kövesi, J. M. Boucher, S. Saoudi, , Pattern Recognition Letters, 22(6) (2001), 603
-
[15]
T. Kanungo, , IEEE Transactions on, 24(7) (2002), 881
-
[16]
J. Han, M. Kamber, Data Mining Concepts and Techniques, Morgan Kaufmann Publications, (2011)
-
[17]
P. J. Rousseeuw, L. Kaufman, Finding Groups in Data, Wiley Online Library , (1990)
-
[18]
G. Gan, C. Ma, J. Wu, Data Clustering: Theory, Algorithms, and Applications, (ASA-SIAM Series on Statistics and Applied Probability), SIAM (2007)
-
[19]
T. Kohonen, Self-organization and associative memory, 100 figs. XV, 312 pages.. Springer-Verlag Berlin Heidelberg New York. Also Springer Series in Information Sciences, volume 8, (1988)
-
[20]
A. K. Jain, J. Mao, K. M. Mohiuddin, , Computer, 29(3) (1996), 31
-
[21]
M. Halkidi, Y. Batistakis, M. Vazirgiannis, , ACM Sigmod Record, 31(2) (2002), 40
-
[22]
E. B. Fowlkes, C. L. Mallows, , Journal of the American statistical association, (1983), 553
-
[23]
M. Halkidi, Y. Batistakis, M. Vazirgiannis, , Journal of Intelligent Information Systems, 17(2) (2001), 107
-
[24]
D. L. Davies, D. W. Bouldin, , IEEE Transactions on, 2 (1979), 224
-
[25]
P. J. Rousseeuw, , Journal of computational and applied mathematics, 20 (1987), 53
-
[26]
S. Sharma, , Applied multivariate techniques, (1996)