On the Korobov and Changhee mixed-type polynomials and numbers
-
2481
Downloads
-
4177
Views
Authors
Byung Moon Kim
- Department of Mechanical System Engineering, Dongguk University, Gyeongju, 780-714, Korea.
Jeong Gon Lee
- Division of Mathematics and Informational Statistics and Nanoscale Science and Technology Institute,Wonkwang University, Iksan 570-749, Republic of Korea.
Lee-Chae Jang
- Graduate School of Education, Konkuk University, Seoul 143-701, Republic of Korea.
Sangki Choi
- Department of Mathematics Education, Konkuk University, Seoul 143-701, Korea.
Abstract
By using the Bosonic p-adic integral, Kim et al. [D. S. Kim, T. Kim, H.-I. Kwon, J.-J. Seo, Adv. Stud. Theor. Phys., 8 (2014),
745–754] studied some identities of the Korobov and Daehee mixed-type polynomials. In this paper, by using the fermionic
p-adic integral, we define the Korobov and Changhee mixed-type polynomials and give some interesting identities of those
polynomials.
Share and Cite
ISRP Style
Byung Moon Kim, Jeong Gon Lee, Lee-Chae Jang, Sangki Choi, On the Korobov and Changhee mixed-type polynomials and numbers, Journal of Mathematics and Computer Science, 17 (2017), no. 3, 400-407
AMA Style
Kim Byung Moon, Lee Jeong Gon, Jang Lee-Chae, Choi Sangki, On the Korobov and Changhee mixed-type polynomials and numbers. J Math Comput SCI-JM. (2017); 17(3):400-407
Chicago/Turabian Style
Kim, Byung Moon, Lee, Jeong Gon, Jang, Lee-Chae, Choi, Sangki. "On the Korobov and Changhee mixed-type polynomials and numbers." Journal of Mathematics and Computer Science, 17, no. 3 (2017): 400-407
Keywords
- Korobov polynomials
- Changhee polynomials
- Korobov and Changhee mixed-type polynomials.
MSC
References
-
[1]
A. Bayad, T. Kim, Identities for Apostol-type Frobenius-Euler polynomials resulting from the study of a nonlinear operator, Russ. J. Math. Phys., 23 (2016), 164–171.
-
[2]
L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88.
-
[3]
D. V. DolgiÄ, D. S. Kim, T. Kim, On Korobov polynomials of the first kind, (Russian) Mat. Sb., 208 (2017), 65–79.
-
[4]
D. V. Dolgy, D. S. Kim, T. Kim, S.-H. Rim, Some identities of special q-polynomials, J. Inequal. Appl., 2014 (2014 ), 10 pages.
-
[5]
D. V. Dolgy, T. Kim, H.-I. Kwon, Identities of symmetry for the higher-order Carlitz’s degenerate q-Euler polynomials under the symmetry group of degree 3, Adv. Stud. Contemp. Math. (Kyungshang), 26 (2016), 595–600.
-
[6]
T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 9 (2002), 288–299.
-
[7]
T. Kim, Identities involving Laguerre polynomials derived from umbral calculus, Russ. J. Math. Phys., 21 (2014), 36–45.
-
[8]
T. Kim, D. V. Dolgy, D. S. Kim, S.-H. Rim, A note on the identities of special polynomials, Ars Combin, 113A (2014), 97–106.
-
[9]
T. Kim, D. V. Dolgy, D. S. Kim, J.-J. Seo, Differential equations for Changhee polynomials and their applications, J. Nonlinear Sci. Appl., 9 (2016), 2857–2864.
-
[10]
D. S. Kim, T. Kim, Identities arising from higher-order Daehee polynomial bases, Open Math., 13 (2015), 196–208.
-
[11]
D. S. Kim, T. Kim, Some identities of degenerate special polynomials, Open Math., 13 (2015), 380–389.
-
[12]
D. S. Kim, T. Kim, Some identities of Korobov-type polynomials associated with p-adic integrals on \(Z_p\), Adv. Difference Equ., 2015 (2015 ), 13 pages.
-
[13]
T. Kim, D. S. Kim, A note on nonlinear Changhee differential equations, Russ. J. Math. Phys., 23 (2016), 88–92.
-
[14]
D. S. Kim, T. Kim, D. V. Dolgy, Some properties of special polynomials, Appl. Math. Sci., 8 (2014), 8559–8564.
-
[15]
D. S. Kim, T. Kim, H.-I. Kwon, T. Mansour, Nonlinear differential equation for Korobov numbers, Adv. Stud. Contemp. Math. (Kyungshang), 26 (2016), 733–740.
-
[16]
D. S. Kim, T. Kim, H.-I. Kwon, J.-J. Seo, Identities of some special mixed-type polynomials, Adv. Stud. Theor. Phys., 8 (2014), 745–754.
-
[17]
D. S. Kim, T. Kim, S.-H. Lee, D. V. Dolgy, Some special polynomials and Sheffer sequences, J. Comput. Anal. Appl., 16 (2014), 702–712.
-
[18]
D. S. Kim, T. Kim, S.-H. Rim, Some identities arising from Sheffer sequences of special polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 23 (2013), 681–693.
-
[19]
T. Kim, D. S. Kim, J.-J. Seo, H.-I. Kwon, Differential equations associated with \(\lambda\)-Changhee polynomials, J. Nonlinear Sci. Appl., 9 (2016), 3098–3111.
-
[20]
T. Kim, H.-I. Kwon, J. J. Seo, Degenerate q-Changhee polynomials, J. Nonlinear Sci. Appl., 9 (2016), 2389–2393.
-
[21]
N. M. Korobov, On some properties of special polynomials, (Russian) Proceedings of the IV International Conference ”Modern Problems of Number Theory and its Applications” (Russian), Tula, (2001), ChebyshevskiÄSb., 1 (2001), 40–49.