Solidification of Nano-enhanced Phase Change Material (nepcm) in an Enclosure
-
3158
Downloads
-
5081
Views
Authors
M. Hosseini
- Islamic Azad University, Department of Mechanical Engineering, Qaemshahr Branch, Iran.
M. Shirvani
- Islamic Azad University, Department of computer Engineering, Babol Branch, Iran.
A. Azarmanesh
- Babol University Pnu, Department of Indutsrial Engineering P. O. Box: 484, Babol, Iran.
Abstract
The effects of nanoparticle dispersion \((\phi= 0, 0.025, 0.05)\) on solidification of different type of
mixture of nanofluids namely, Cu-water, \(TiO_2\)-Water and \(Al_2O_3\)-Water nanofluid inside a vertical
enclosure are investigated numerically for different Grashof number \(( Gr=10^4 ,10^5 ,10^6 )\). An enthalpy
porosity technique is used to trace the solid and liquid interface. Comparisons with previously published
works show the accuracy of the obtained results. A maximum of 16% decrease in solidification time for
\(Gr=10^6\) in comparison with \(Gr=10^5\) was found with the Cu nanoparticles and 0.2% volume fraction. It
was observed that dispersion of nanoparticles can be used to control the solidification time based on
enhancing conduction heat transfer mechanism of solidification.
Share and Cite
ISRP Style
M. Hosseini, M. Shirvani, A. Azarmanesh, Solidification of Nano-enhanced Phase Change Material (nepcm) in an Enclosure, Journal of Mathematics and Computer Science, 8 (2014), no. 1, 21 - 27
AMA Style
Hosseini M., Shirvani M., Azarmanesh A., Solidification of Nano-enhanced Phase Change Material (nepcm) in an Enclosure. J Math Comput SCI-JM. (2014); 8(1):21 - 27
Chicago/Turabian Style
Hosseini, M., Shirvani, M., Azarmanesh, A.. "Solidification of Nano-enhanced Phase Change Material (nepcm) in an Enclosure." Journal of Mathematics and Computer Science, 8, no. 1 (2014): 21 - 27
Keywords
- Nanoparticle
- Nanofluid
- Solidification
- Phase change material.
MSC
- 76T99
- 76T20
- 76R10
- 80A22
- 80A20
References
-
[1]
J. Khodadadi, S. F. Hosseinizadeh, Nano particle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage, Int. J. Comm Heat Mass Transfer, 34 (2007), 534-543
-
[2]
B. Zalba, J. Marin, L. F. Cabeza, H. Mehling, Review on thermal energy storage with phase change materials, heat transfer and analysis and applications, Appl. Therm. Eng. , 2 (2003), 251-283.
-
[3]
A. Robert Huggins, Energy Storage, Springer New York Heidelberg Dordrecht , London (2010)
-
[4]
H. Mehling, L. F. Cabeza, Heat and cold storage with PCM: An up to date introduction into basics and applications, Springer-Verlag Berlin , Heidelberg (2008)
-
[5]
A. Sharma, V. Tyagi, C. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews , 13(2) (2009), 318–45.
-
[6]
S. Jegadheeswaran, S. D. Pohekar, Performance enhancement in latent heat thermal storage system: A review, Renewable Sustainable Energy Rev. , 13 (2009), 2225-2244.
-
[7]
M. Kenisarin, K. Mahkamov, Solar energy storage using phase change materials, Renewable Sustainable Energy Rev. , 11 (2007), 1913–1965.
-
[8]
U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: Developments and Application of Non-Newtonian Flows, ASME, FED-Vol. 231/MD-, 66 (1995), 99–105
-
[9]
L. Godson, B. Raja, D. M. Lal, S. Wongwises, Enhancement of heat transfer using nanofluids an overview, Renewable Sustainable Energy Rev. , 14 (2010), 629–641.
-
[10]
A. A. Ranjbar, S. Kashani, S. F. Hosseinizadeh, M. Ghanbarpour, Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material, J.Thermal science, (in press)
-
[11]
J. M. Khodadadi, L. Fan, Expedited Freezing of Nanoparticle-Enhanced Phase Change Materials (NEPCM) Exhibited Through a Simple 1-D Stefan Problem Formulation, ASME Conference Proceedings , 1 (2009), 345-351.
-
[12]
S. Wu, D. Zhu, X. Li, H. Li, J. Lei, Thermal energy storage behavior of Al2O3–H2O nanofluids , Thermochim. Acta , 438 (2009), 73–77
-
[13]
J. C. Maxwell , A Treatise on Electricity and Magnetism, Clarendon Press, second edition , Oxford, UK (1881)
-
[14]
K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J.Heat Mass Transfer , 46 (19) (2003), 3639–3653.
-
[15]
Xiang-Qi Wang, Arun S. Mujumdar, A Review on Nanofluids - Part I: Theoretical and Numerical Investigations, Brazilian Journal of Chemical Engineering , 25 (04) (2008), 613 – 630.
-
[16]
Y. Xuan, W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Tran, 43(19) (2000), 3701-3707.
-
[17]
J. Buongiorno, Convective Transport in Nanofluids, J. Heat Transfer, 128(3) (2006), 240-250.
-
[18]
R. B. Mansour, N. Galanis, C. T. Nguyen, Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer with Nanofluids, Appl. Therm. Eng., 27(1) (2007), 240-249.
-
[19]
S. Z. Heris, M. N. Esfahany, G. Etemad, Numerical Investigation of Nanofluid Laminar Convective Heat Transfer through a Circular Tube, Numer. Heat Tr. A-Appl., 52(11) (2007), 1043-1058.
-
[20]
V. Bianco, F. Chiacchio, O. Manca, S. Nardini, Numerical Investigation of Nanofluids Forced Convection in Circular Tubes, Appl. Therm. Eng., 29(17-18) (2009), 3632-3642.
-
[21]
X. Wang, A. A. Mujumdar, Review on Nanofluids - Part I: Theoretical and Numerical Investigations, Braz. J. Chem. Eng., 25(4) (2008), 613-630.
-
[22]
H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, NetsuBussei , 7 (4) (1993), 227–233.
-
[23]
S. Lee, S. U.-S. Choi, S. Li, J. A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, Transactions of the ASME, Journal of Heat Transfer , 121 (1999), 280-289.
-
[24]
W. Yu, D. M. France, S. U. S.Choi, J. L. Routbort, Energy Systems, Energy Systems Division Review and Assessment of Nanofluid Technology for Transportation and Other Applications, Argonne National Laboratory, United States (2007)
-
[25]
M. Chopkar, S. Sudarshan, P. K. Das, I. MANNA, Effect of Particle Size on Thermal Conductivity of Nanofluid, The Minerals, Metals & Materials Society and ASM International , 39A (2008), 1535-1542.
-
[26]
H. Xie, J. Wang, T. Xi, F. Ai, Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles, Journal of Applied Physics, 91 (2002b), 4568-4572.
-
[27]
C. H. Li, G. P. Peterson, Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanopartic1e Suspensions (Nanofluids), Journal of Applied Physics 99: 084314 , (2006)
-
[28]
S. K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, Transactions of the ASME, Journal of Heat Transfer , 125 (2003a), 567-574
-
[29]
R. L. Hamilton, O. K. Crosser, Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fundam, 1 (1962), 187–191
-
[30]
W. Yu, S. U. S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticle Res. , 5 (2003), 167–171.
-
[31]
F. J. Wasp, J. P. Kenny, R. L. Gandhi , Solid-Liquid Flow Slurry Pipeline Transportation, Trans. Tech. Pub, Berlin (1977)
-
[32]
V. R. Voller, C. R. Swaminathan, Fixed grid techniques for fase change problems: A Review, International Journal for Numerical Methods in Engineering, 30 (1990), 875-898
-
[33]
Yvan Dutil, Daniel R. Rousse, Nizar Ben Salah, Stephane Lassue, Laurent Zalewski, A review on phase-change materials: Mathematical modeling and simulations, Renewable and Sustainable Energy Reviews, 15 (2011), 112–130.
-
[34]
V. R. Voller, C. Prakash, A fixed-grid numerical modeling methodology for convection diffusion mushy region phase-change problems, Int. J. Heat Mass Transfer , 30 (8) (1987), 1709–1719.
-
[35]
J. F. Thompson, Numerical Grid Generation, North-Holland, New York (1982)
-
[36]
J. F. Thompson, Z. U. Warsi, C. W. Mastin, Numerical Grid Generation, Foundation and Applications. North-Holland, New York (1985)
-
[37]
H. K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics the finite volume method, Longman Scientific & Technical, New York (1995)