A Method for Calculating Interval Linear System
-
3467
Downloads
-
5063
Views
Authors
Shohreh Abolmasoumi
- Department of Mathematics, Arak branch, Islamic Azad University, Arak, Iran.
Majid Alavi
- Department of Mathematics, Arak branch, Islamic Azad University, Arak, Iran.
Abstract
In this paper we represent an efficient algorithm for finding the interval solution for the interval linear system. This algorithm applies the optimization problem based on gradient vector in order to obtain the lower bound and upper bound of the interval solution.
Share and Cite
ISRP Style
Shohreh Abolmasoumi, Majid Alavi, A Method for Calculating Interval Linear System, Journal of Mathematics and Computer Science, 8 (2014), no. 3, 193-204
AMA Style
Abolmasoumi Shohreh, Alavi Majid, A Method for Calculating Interval Linear System. J Math Comput SCI-JM. (2014); 8(3):193-204
Chicago/Turabian Style
Abolmasoumi, Shohreh, Alavi, Majid. "A Method for Calculating Interval Linear System." Journal of Mathematics and Computer Science, 8, no. 3 (2014): 193-204
Keywords
- Interval number
- Interval linear system
- Interval matrix
- Cramer’s rule
- Gradient vector
- Multivariate function.
MSC
References
-
[1]
M. Alperbazaran, Calculation fuzzy inverse matrix using fuzzy linear equation system, Applied Soft Computing , 12 (2012), 1810-1813.
-
[2]
G. Alefeld, J. Herzberger, Introduction to Interval Computations, Academic Press, New York (1983)
-
[3]
T. Allahviranloo, Successive over relaxation iterative method for fuzzy system of linear equation, Applied Mathematics and Computation , 162 (2005), 189–196.
-
[4]
M. Dehngan, B. Hashemi, Iterative solution of fuzzy linear systems, Applied Mathematics and Computation , 175 (2006), 645–674.
-
[5]
D. Dubois, H. Prade, Systems of linear fuzzy constraints, International Journal of Systems Science, 9 (1978), 613–626.
-
[6]
R. Fuller, Neural Fuzzy Systems , Donner visiting professor Abo Akademi university , ISBN 951-650-624-0, ISSN 0358-5654. (1395)
-
[7]
K. Ganesan, P. Veeramani , On Arithmetic Operations of Interval Numbers, International Journal of Uncertainty, Fuzziness and Knowledge- Based Systems, 13 (6) (2005), 619 - 631.
-
[8]
K. Ganesan, On Some Properties of Interval Matrices, International Journal of Computational and Mathematical Sciences, 1 (2) (2007), 92-99.
-
[9]
S. Markov, Computation of algebraic solution to interval system via system of coordinates, Scientific computing, Validated Numerics, Interval methods, Eds. W. Kraemer, J. Wolff von Gudenberg, Kluwer, (2001), 103-114.
-
[10]
E. Moor, R. Baker Kear foot, Michael.J. Cloud, Introduction to interval Analysis, (studies in Applied Mathematics, SILM , philaderphia,PA, USA, (1979), 19104 -2688
-
[11]
Sukanta Nayak, S. Chakraverty, A new Approch to solve Fuzzy system of linear Equation, contents list available at tjmcs, journal of mathematics and computer science , 7 (2013), 205-212.
-
[12]
S. H. Nasseri, F. Zahmatkesh, Huang method for solving full fuzzy linear system, The journal of Mathematics and Computer Science, 1 (2010), 1-5.
-
[13]
T. Nirmal, D. Datta, H. S. Kushwaha, K. Ganesan., Invers interval matrix: E new approach Applied Mathematics, Sciences, Vol.5, 201, no 13 (2011), 607-624.
-
[14]
E. R. Hansen, R. R. Smith, Interval arithmetic in matrix computations, Part 2, SIAM. Journal of Numerical Analysis, 4 (1967), 1 - 9.
-
[15]
D. S. Watkins, Fundamentals of Matrix Computations, Wiley-Interscience Pub., New York (2002)