A Class of Multivalent Analytic Functions Defined by a New Linear Operator
-
2811
Downloads
-
4794
Views
Authors
Rahim Kargar
- Department of Mathematics, Payame Noor University, I. R. of IRAN.
Abdoljalil Bilavi
- Department of Mathematics, Shoush Branch, Islamic Azad University, Shoush, Iran.
Salahaddin Abdolahi
- Department of Mathematics, Payame Noor University, I. R. of IRAN.
Salah Maroufi
- Department of Mathematics, Payame Noor University, I. R. of IRAN.
Abstract
The main object of the present paper is to derive some results for multivalent analytic functions defined by a linear operator. Making use of a certain operator, which is defined here by means of Hadamard product, we introduce a subclasses \(S_{A,B}^{p,\gamma}(\alpha,\lambda,\mu,\nu,a,c)\) of the class \(A(p)\) of normalized p-valent analytic functions on the open unit disk. Also we have extended some of the previous results and have given necessary and sufficient condition for this class.
Share and Cite
ISRP Style
Rahim Kargar, Abdoljalil Bilavi, Salahaddin Abdolahi, Salah Maroufi, A Class of Multivalent Analytic Functions Defined by a New Linear Operator, Journal of Mathematics and Computer Science, 8 (2014), no. 4, 326-334
AMA Style
Kargar Rahim, Bilavi Abdoljalil, Abdolahi Salahaddin, Maroufi Salah, A Class of Multivalent Analytic Functions Defined by a New Linear Operator. J Math Comput SCI-JM. (2014); 8(4):326-334
Chicago/Turabian Style
Kargar, Rahim, Bilavi, Abdoljalil, Abdolahi, Salahaddin, Maroufi, Salah. "A Class of Multivalent Analytic Functions Defined by a New Linear Operator." Journal of Mathematics and Computer Science, 8, no. 4 (2014): 326-334
Keywords
- Analytic functions
- Multivalent functions
- Hadamard product
- Subordination
- Linear operators.
MSC
References
-
[1]
M. K. Aouf , A generalization of multivalent functions defined by Ruscheweyh derivatives, Soochow J. Math. , 17 (1991), 83-97.
-
[2]
M. K. Aouf, On certain subclass of analytic 𝑝-valent function, II, Math. Japan., 34 (1989), 683-691.
-
[3]
B. C. Carlson, D. B. Shaffer, Starlike and prstarlike hypergeometric functions, SIAM J. Math. Anal. , 15 (1984), 737-745.
-
[4]
M. P. Chen, A class of 𝑝-valent functions, Soochow J. Math. , 8 (1982), 15-26.
-
[5]
N. E. Cho, O.H. Kwon, H. M. Srivastava, Inclusion and argument properties for certain subclasses of multivalent functions associated with a family of linear operators , J. Math. Anal. Appl. , 292 (2004), 470-483.
-
[6]
Jae Ho Choi, On differential subordinations of multivalent functions involving a certain fractional derivative operator, International Journal of Mathematics and Mathematical Sciences, (2010), 1-10.
-
[7]
J. H. Choi, M. Saigo, H. M. Srivastava, Some inclusion properties of a certain family of integral opertaors, J. Math. Anal. Appl. , 276 (2002), 432-445.
-
[8]
J. Dziok, Classes of analytic funcions involving some integral operator, FoliaSci. Univ. Tech. Resoviensis , 20 (1995), 21-39.
-
[9]
R. M. Goel, N. S. Sohi, A new criterion for \(p\)-valent functions, Proc. Amer. Math. Soc. , 78 (1980), 353-357.
-
[10]
R. M. Goel, N. S. Sohi , New criteria for \(p\)-valence, Indian J. Pure Appl. Math. , 11 (1980), 1356-1360.
-
[11]
Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv, Vvssh. Ucebn. Zaved. Math. (in Russian)., 10 (1987), 83-89
-
[12]
V. Kumar, S. L. Shukla, Multivalent function defined by Ruscheweyh derivatives, II, Indian J. Pure Appl. Math. , 15 (1984), 1228-1238.
-
[13]
J. L. Liu, K. I. Noor , Some properties of Noor integral operator, J. Natur. Geom., 21 (2002), 81-90.
-
[14]
B. S. Mehrok , A class of univalent functions, Tamkang J. Math , 13 (1982), 141-155.
-
[15]
S. Owa , On certain subclass of analytic 𝑝-valent function , Math. Japon. , 29 (1984), 191-198.
-
[16]
S. Owa, On the distortion theorems, I. Kyungpook Math. J. , 18 (1978), 53-59.
-
[17]
S. Owa, H. M. Srivastava, Univalent starlike generalized hypergeometric functions, Canad. J. Math. , 39 (1987), 1057-1077.
-
[18]
S. Rusheweyh, New criteria for univalent functions , Proc. Amer. Math. Soc. , 49 (1975), 109-115.
-
[19]
H. Saitoh, A liner operator and its applications of first order deffrential subodinations, Math. Japon. , 44 (1996), 31-38.
-
[20]
H. M. Srivastava, M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients, I. J. of Mathematical Analysis and Applications, 171 (1992), 1-13.