Adomian Decomposition Method for Solving Fractional Bratu-type Equations
-
3588
Downloads
-
6225
Views
Authors
Bahman Ghazanfari
- Department of Mathematics, Lorestan University, Khorramabad, 68137-17133, Iran.
Amaneh Sepahvandzadeh
- Department of Mathematics, Lorestan University, Khorramabad, 68137-17133, Iran.
Abstract
The Adomian decomposition method is proposed to solve fractional Bratu-type equations. The iteration procedure is based on a fractional Taylor series. Three examples are illustrated to show the presented method’s efficiency and convenience.
Share and Cite
ISRP Style
Bahman Ghazanfari, Amaneh Sepahvandzadeh, Adomian Decomposition Method for Solving Fractional Bratu-type Equations, Journal of Mathematics and Computer Science, 8 (2014), no. 3, 236-244
AMA Style
Ghazanfari Bahman, Sepahvandzadeh Amaneh, Adomian Decomposition Method for Solving Fractional Bratu-type Equations. J Math Comput SCI-JM. (2014); 8(3):236-244
Chicago/Turabian Style
Ghazanfari, Bahman, Sepahvandzadeh, Amaneh. "Adomian Decomposition Method for Solving Fractional Bratu-type Equations." Journal of Mathematics and Computer Science, 8, no. 3 (2014): 236-244
Keywords
- Fractional Bratu-type equation
- Adomian decomposition method
- Jumarie’s derivative.
MSC
References
-
[1]
F. B. M. Duarte, J. A. Tenreiro Machado, Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators, Nonlinear Dyn., 29 (2002), 315–342
-
[2]
O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323-337.
-
[3]
N. Engheta , On fractional calculus and fractional multipoles in electromagnetism, IEEE T. Antenn. Propag, 44 (1996), 554-566.
-
[4]
R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586-1593.
-
[5]
V. V. Kulish, Jos L. Lage , Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 , doi:10.1115/1.1478062. (2002)
-
[6]
K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Soft., 41 (2010), 9-12.
-
[7]
V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction diffusion systems, J. Comput. Appl. Math., 220 (2008), 215-225.
-
[8]
C. Lederman, J-M Roquejoffre, N. Wolanski, Mathematical justification of a nonlinear integrodifferential equation for the propagation of spherical flames, Ann. di Mate, 183 (2004), 173-239.
-
[9]
F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, (1997), 291-348.
-
[10]
F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonl. Sci. Num. Sim., 15 (2010), 939-945.
-
[11]
H. Jafari, S. Seifi, Homotopy Analysis Method for solving linear and nonlinear fractional diffusion-wave equation, Commun. Nonli. Science Numer. Simul., 14 ( 5) (2009), 2006--2012.
-
[12]
V. Daftardar-Gejji, H. Jafari, Solving a multi-order fractional differential equation using adomian decomposition, Appl. Math. Comput., 189 (2007), 541-548.
-
[13]
O. Abdulaziz, I. Hashim, S. Momani, Solving systems of fractional differential equations by homotopy-perturbation method, Phys. Lett., A 372 (2008), 451-459.
-
[14]
B. Ghazanfari, A. G. Ghazanfari, M. Fuladvand, Modification of the Homotopy Perturbation Method for Numerical Solution of Nonlinear Wave and System of Nonlinear Wave Equations, J. Math. Computer Sci. , 3 (2011), 212–224.
-
[15]
M. Mahmoudi, M. V. Kazemi, Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method, J. Math. Computer Sci. , 7 (2013), 138–143.
-
[16]
M. Rabbani, New Homotopy Perturbation Method to Solve Non-Linear Problems, J. Math. Computer Sci., 7 (2013), 272–275.
-
[17]
I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 674-684.
-
[18]
G. Wu, E. W. M. Lee, Fractional variational iteration method and its application, Phys. Lett., A 374 (2010), 2506-2509.
-
[19]
Z. Odibat, S. Momani, V. Suat Erturk, Generalized differential transform method: application to differential equations of fractional order, Appl. Math. Comput., 197 (2008), 467-477.
-
[20]
Y. Zhang , A finite difference method for fractional partial differential equation , Appl. Math. Comput., 215 (2009), 524-529.
-
[21]
A. Neamaty, B. Agheli, R. Darzi , Solving Fractional Partial Differential Equation by Using Wavelet Operational Method, J. Math. Computer Sci., 7 (2013), 230–240.
-
[22]
H. Azizi, Gh. Barid Loghmani , A numerical method for space fractional diffusion equations using a semi-disrete scheme and Chebyshev collocation method, J. Math. Computer Sci. , 8 (2014), 226–235.
-
[23]
G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston (1994)
-
[24]
G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544.
-
[25]
G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl., 51 (2006), 1367–1376.
-
[26]
Y. Chen, Y. Yan, K. W. Zhang, On the local fractional derivative, J. Math. Anal. Appl., 362 (2010), 17–33.