Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach
-
2665
Downloads
-
4591
Views
Authors
Khosro Sayevand
- Department of Mathematics, Faculty of Science, Malayer University, Malayer, Iran.
Abstract
In this article, expanding perturbation approach is applied for solving the initial value problems with fractional coordinate derivatives. The fractional derivative is described in the Caputo sense. The response expressions are written in terms of the Mittag-Leffler functions. Convergence of the approach is proved. Comparisons are made to confirm the reliability and effectiveness of the present ideas.
Share and Cite
ISRP Style
Khosro Sayevand, Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach, Journal of Mathematics and Computer Science, 8 (2014), no. 4, 359 - 366
AMA Style
Sayevand Khosro, Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach. J Math Comput SCI-JM. (2014); 8(4):359 - 366
Chicago/Turabian Style
Sayevand, Khosro. "Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach." Journal of Mathematics and Computer Science, 8, no. 4 (2014): 359 - 366
Keywords
- Expanding perturbation approach
- fractional initial value problems
- Caputo derivative.
MSC
References
-
[1]
I. Podlubny, Fractional differential equations , Academic Press, San Diego (1999)
-
[2]
J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun Nonlinear Sci Numer Simu., 16 (2011), 1140-1153.
-
[3]
I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calculus Appl. Anal. , 5 (2002), 367-386.
-
[4]
F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl.Math. Lett. , 9 (1996), 23-28.
-
[5]
F. Mainardi , Fractional calculus: some basic problems in continuum and statistical mechanics, New York, Springer, (1997), 291-348.
-
[6]
J. H. He, Nonlinear oscillation with fractional derivative and its applications, in: International conference on vibrating engineering’98, Dalian, China, (1998), 288-291.
-
[7]
B. Ghazanfari, A. Sepahvandzadeh, Adomian decomposition method for solving fractional Bratu-type equations, J. Math. Comput. Sci. , 8 (3) (2014), 236-244.
-
[8]
M. Fardi, K. Sayevand, Homotopy analysis method: A fresh view on Benjamin-Bona-Mahony-Burgers equation, J. Math. Comput. Sci. , 4(3) (2012), 494-501.
-
[9]
A. Golbabai, K. Sayevand, Analytical modelling of fractional advection-dispersion equation defined in a bounded space, , 53 (2011), 1708-1718.
-
[10]
K. Sayevand, A. Golbabai, A. Yildirim, Analysis of differential equation of fractional order, Appli. Math. Modell. , 36 (2012), 4356-4364.
-
[11]
H. Jafari, N. Kadkhoda, E. Salehpoor, Application of (G’/G)-expansion method to nonlinear lienard equation, Indian J. Sci. Tech., 5 (4) (2012), 2554-2556.
-
[12]
J. H. He, D. H. Shou, Application of parameter-expanding method to strongly nonlinear oscillators, Int. J. Nonlinear Sci. Numer. Simul., 8 (2007), 121-124.
-
[13]
H. Jafari, M. Ghorbani, C. M. Khalique , Exact Travelling Wave Solutions for Isothermal Magnetostatic Atmospheres by Fan Sub-equation Method, Abst. Appl. Anal. Article ID 962789, doi:10.1155/2012/962789., (2012), 11 pages
-
[14]
G. Adomian, Solving frontier problems of physics: The decomposition method , , Kluwer (1994)
-
[15]
S. Momani, K. Al-Khald, Numerical solution of the decomposition method, Appl.Math. Comput. , 162 (2005), 1351-1365.
-
[16]
J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257-262.
-
[17]
S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A , 365 (2007), 345-350.
-
[18]
Z. Odibat, Compact structures in a class of nonlinearly dispersive equations with time- fractional derivatives, Appl. Math. Comput. , 205 (2008), 273-280.
-
[19]
Y. Khan, N. Faraz, S. Kumar, A. Yildirim, A coupling method of homotopy method and Laplace transform for fractional modells, U.P.B. Sci. Bull., Series A Appl. Math. Phys, 74 (1) (2012), 57 - 68.
-
[20]
H. Jafari, K. Sayevand, H. Tajadidi, D. Baleanu, Homotopy analysis method for solving Abel differential equation of fractional order, , Cent. Europ. J. Phys. , Doi: 10.24781. (2013)
-
[21]
J. H. He, Variational iteration method-Some recent results and new interpretations, J. Comput. Appl. Math., (207) (1) (2007), 3-17.
-
[22]
K. Sayevand, A. Golbabai, Analysis of differential equations of fractional order, Appli. Mat. Model. , 36 (2012), 4356-4364.
-
[23]
A. H. Nayefeh, Introduction to perturbation techniques, John Wiley, (1993)
-
[24]
N. N. Bogoliubov, Y. A. Mitropolsky , Asymptotic methods in the theory of nonlinear silliations, Gordon and Breach, New Work (1961)
-
[25]
F. Mainardi, R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math. , 118 (2000), 283-299.
-
[26]
A. Golbabai, K. Sayevand, The homotopy perturbation method for multi order time fractional differential equations, Nonlinear Sci. Lett., A 2 (2010), 141-147.
-
[27]
V. Daftardar, H. Jafari, Solving a multi-Order fractional differential equations using Adomian decomposition, Appl. Math. Comput. , 189 (2007), 541-548.
-
[28]
S. Momani, S. Hadid, Lyapunov stability solutions of fractional integro differential equations, Int. J. Math. Mathematical Scie. , 47 (2004), 2503-2507.