Some Notes on the Convergence Control Parameter in the Framework of the Homotopy Analysis Method
-
3053
Downloads
-
4823
Views
Authors
Jamshid Saeidian
- Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani avenue, Tehran 1561836314, Iran.
Shahnam Javadi
- Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani avenue, Tehran 1561836314, Iran.
Abstract
The convergence control parameter and the technique of \(c_0\)-curves is an unavoidable part of any homotopy analysis method work. The mathematical background of this parameter has been studied by other authors. Here we revisit this parameter and its essence; we mention that in some examples the parameter may fail to work. Also we give some comments in using the technique of \(c_0\)-curves and show, through examples, that a misusage may lead the user to wrong results.
Share and Cite
ISRP Style
Jamshid Saeidian, Shahnam Javadi, Some Notes on the Convergence Control Parameter in the Framework of the Homotopy Analysis Method, Journal of Mathematics and Computer Science, 9 (2014), no. 2, 103-110
AMA Style
Saeidian Jamshid, Javadi Shahnam, Some Notes on the Convergence Control Parameter in the Framework of the Homotopy Analysis Method. J Math Comput SCI-JM. (2014); 9(2):103-110
Chicago/Turabian Style
Saeidian, Jamshid, Javadi, Shahnam. "Some Notes on the Convergence Control Parameter in the Framework of the Homotopy Analysis Method." Journal of Mathematics and Computer Science, 9, no. 2 (2014): 103-110
Keywords
- Homotopy analysis method
- Convergence-control parameter
- Technique of \(c_0\)-curves.
MSC
References
-
[1]
S. Abbasbandy, E. Magyari, E. Shivanian, The homotopy analysis method for multiple solutions of nonlinear boundary value problems , Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3530-3536.
-
[2]
S. Abbasbandy, E. Shivanian, K. Vajravelu, Mathematical properties of \(\hbar\)-curve in the frame work of the homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4268-4275.
-
[3]
M. Fardi, K. Sayevand, Homotopy analysis method: a fresh view on Benjamin-Bona-Mahony-Burgers equation, Journal of Math. Computer Sci., 4 (2012), 494-501.
-
[4]
S. J. Liao, A kind of approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics, Int. J. Non-Linear Mech. , 32 (1997), 815-822.
-
[5]
S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004), 499-513.
-
[6]
S. J. Liao, Comparison between the homotopy analysis method and homotopy perturbation method, Appl. Math. Comput., 169 (2005), 1186
-
[7]
S. J. Liao, Notes on the homotopy analysis method: Some definitions and theorems, Commun. Nonlinear Sci. Num. Simul. , 14 (2009), 983-997.
-
[8]
S. J. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun. Nonlinear Sci. Num. Simul., 15 (2010), 2003-2016.
-
[9]
S. J. Liao, A.T. Chwang, Application of homotopy analysis method in nonlinear oscillations, ASME. J. Appl. Mech, 65 (1998), 914-922.
-
[10]
S. J. Liao, Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Stud. Appl. Math. , 119 (2007), 297-354.
-
[11]
C. S. Liu, The essence of the generalized Taylor theorem as the foundation of the homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul. , 16 (2011), 1254-1262.
-
[12]
Z. Odibat, S. Momani, H. Xu, A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations, Appl. Math. Modell. , 34 (2010), 593-600.
-
[13]
S. J. Ramazannia Toloti , J. Saeidian, Comments on :R.A. Van Gorder and K. Vajravelu, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 4078-4089, Commun. Nonlinear Sci. Num. Simul., 17 (2012), 1085-1088.
-
[14]
A. Sami Bataineh, M. S. M. Noorani, I. Hashim, Modified homotopy analysis method for solving systems of second-order BVPs, Commun. Nonlinear Sci. Num. Simul. , 14 (2009), 430-442.
-
[15]
R. A. Van Gorder, K. Vajravelu, On the selection of auxiliary functions, operators and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: A general approach, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 4078-4089.
-
[16]
H. Vosughi, E. Shivanian, S. Abbasbandy, A new analytical technique to solve Volterra's integral equations, Math. Methods Appl. Sci., 1243-1253 (2011)
-
[17]
H. Xu, S. J. Liao, X. C. You, Analysis of nonlinear fractional partial differential equations with the homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul. , 14 (2009), 1152-1156.
-
[18]
A. Zare, M. A. Firoozjaee, Numerical solution for Maxwell’s equation in metamaterials by homotopy analysis method, Journal of Math. Computer Sci., 3 (2011), 225-235.
-
[19]
S. P. Zhu, An exact and explicit solution for the valuation of American put options, Quantitative Finance, 6 (2006), 229-242.
-
[20]
M. Zurigat, S. Momani, Z. Odibat, A. Alawneh, The homotopy analysis method for handling systems of fractional differential equations, Appl. Math. Modell. , 34 (2010), 24-35.
-
[21]
S. J. Liao, Proposed homotopy analysis techniques for the solution of nonlinear problems, Ph.D. dissertation, Shanghai Jiao Tong University (1992)
-
[22]
S. J. Liao , Beyond perturbation: An introduction to homotopy analysis method, Boca Raton, Chapman Hall/CRC Press (2003)
-
[23]
S. J. Liao, Homotopy analysis method in nonlinear differential equations, Springer and Higher Education Press, Heidelberg (2012)