Coupled Fixed Point Results for Mappings Involving \((\alpha , \psi)\)- Weak Contractions in Ordered Metric Spaces and Applications
-
2973
Downloads
-
4826
Views
Authors
Manish Jain
- Department of Mathematics, Ahir College, Rewari 123401, India.
Neetu Gupta
- HAS Department, YMCAUST, Faridabad, India.
Sanjay Kumar
- Department of Mathematics, DCRUST, Muthal, Soneptal, India.
Abstract
In this paper we introduce the notion of \((\alpha , \psi)\)- weak contractions and use the notion to establish the existence and uniqueness of coupled common fixed points for the mixed monotone operators in partially ordered metric spaces. The obtained results extend, improve, complement and unify many recent coupled fixed point results present in the literature. The theoretic results are accompanied with suitable examples. An application to the existence and uniqueness of the solution of the system of integral equations is also presented.
Share and Cite
ISRP Style
Manish Jain, Neetu Gupta, Sanjay Kumar, Coupled Fixed Point Results for Mappings Involving \((\alpha , \psi)\)- Weak Contractions in Ordered Metric Spaces and Applications, Journal of Mathematics and Computer Science, 10 (2014), no. 1, 23-46
AMA Style
Jain Manish, Gupta Neetu, Kumar Sanjay, Coupled Fixed Point Results for Mappings Involving \((\alpha , \psi)\)- Weak Contractions in Ordered Metric Spaces and Applications. J Math Comput SCI-JM. (2014); 10(1):23-46
Chicago/Turabian Style
Jain, Manish, Gupta, Neetu, Kumar, Sanjay. "Coupled Fixed Point Results for Mappings Involving \((\alpha , \psi)\)- Weak Contractions in Ordered Metric Spaces and Applications." Journal of Mathematics and Computer Science, 10, no. 1 (2014): 23-46
Keywords
- Mixed g-monotone property
- Coupled coincidence point
- \((\alpha ، \psi)\)- weak contractions
- Coupled common fixed point.
MSC
References
-
[1]
S. Banach, Surles operations dans les ensembles et leur application aux equation sitegrales, Fund. Math. , 3 (1922), 133–181.
-
[2]
R. P. Agarwal, M. Meehan, D. O’Regan , Fixed Point , Th. Appl., Camb. Univ. Press, (2001)
-
[3]
R. P. Agarwal, M. A. El-Gebeily, D.O’Regan, Generalized contractions in partially ordered metric spaces, Applicab. Anal. , 87 (1) (2008), 109–116.
-
[4]
D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458–464.
-
[5]
A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Internat. J. Math. Math. Sc. , 29 (9) (2002), 531–536.
-
[6]
L. B. Ciric , A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. , 45 (1974), 267–273.
-
[7]
J. Dugundji, A. Granas, Fixed Point theorem, Springer, New York, USA (2003)
-
[8]
D. J. Guo, V. Lakshmikantham , Nonlinear Problems in Abstract Cones, Acad. Press, Boston, Mass, USA (1988)
-
[9]
A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329.
-
[10]
J. J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order , 22 (3) (2005), 223–239.
-
[11]
B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257–290.
-
[12]
D. R. Smart, Fixed Point Theorems, Camb. Univ. Press, London, UK (1974)
-
[13]
T. Suzuki , Meir-Keeler contractions of integral type are still Meir-Keeler contractions, Internat. J. Math. Math. Sc., Article ID 39281, 6 pages (2007)
-
[14]
T. Suzuki , A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (5) (2008), 1861–1869.
-
[15]
E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems, Springer, Berlin, Germany (1986)
-
[16]
M. Turinici , Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J. Math. Anal. Appl., 117 (1) (1986), 100–127.
-
[17]
A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. , 132 (5) (2004), 1435–1443.
-
[18]
D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Analysis, 11 (5) (1987), 623–632.
-
[19]
T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal.: TMA , 65 (7) (2006), 1379–1393.
-
[20]
V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. TMA, 74 (2011), 7347–7355.
-
[21]
V. Lakshmikantham, Lj. B. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. , 70 (2009), 4341–4349.
-
[22]
Binayak S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal., 73 (2010), 2524–2531.
-
[23]
A. Alotaibi, S. M. Alsulami, Coupled coincidence points for monotone operators in partially ordered metric spaces, Fixed Point Th. Appl., 44 (2011)
-
[24]
N. V. Luong, N. X. Thuan, Coupled fixed point in partially ordered metric spaces and applications , Nonlinear Anal. , 74 (2011), 983–992.
-
[25]
N. Hussain, A. Latif, M. H. Shah , Coupled and tripled coincidence point results without compatibility, Fixed Point Th. Appl. doi: 10.1186/1687-1812-2012-77. , 77 (2012),
-
[26]
R. Saadati, S. M. Vaezpour, P. Vetro, B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Modelling , 52 (2010), 797–801.
-
[27]
B. Samet, Calogero Vetro, Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Anal.: TMA , 74 (12) (2011), 4260–4268.
-
[28]
W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results, Comput. Math. Appl. , 60 (8) (2010), 2508–2515.
-
[29]
W. Shatanawi, B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Com. Modelling, 680-687 (2012)
-
[30]
W. Sintunavarat, Y. J. Cho, P. Kumam, Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces, Fixed Point Th. Appl., (2011)
-
[31]
W. Sintunavarat, Y. J. Cho, P. Kumam, Coupled fixed point theorems for weak contraction mapping under F-invariant set, Abstr. Appl. Anal. 2012, Article ID 324874, (2012), 15 pages
-
[32]
W. Sintunavarat, P. Kumam, Coupled best proximity point theorem in metric spaces, Fixed Point Th. Appl., (2012)
-
[33]
H. Aydi, E. Karapınar, W. Shatanawi , Coupled fixed point results for \((\psi , \phi)\)-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl., 62 (12) (2011), 4449–4460.
-
[34]
M. E. Gordji, Y. J. Cho, S. Ghods, M. Ghods, M. H. Dehkordi, Coupled fixed point theorems for contractions in partially ordered metric spaces and applications, Math. Prob. Engg., 2012, Article ID 150363, (2012), 20 pages
-
[35]
B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. , 72 (12) (2010), 4508–4517.
-
[36]
T. Abdeljawad, H. Aydi, E. Karapınar , Coupled fixed points for Meir-Keeler contractions in ordered partial metric spaces, Math. Prob. Engg., Article ID 327273, doi:10.1155/2012/327273. , (2012), 20 pages
-
[37]
V. Berinde, M. Pacurar, Coupled fixed point theorems for generalized symmetric Meir-Keeler contractions in ordered metric spaces, Fixed Point Th. Appl., doi:10.1186/1687-1812-2012-115. , 2012 (2012), 11 pages.
-
[38]
M. Jain, K. Tas, S. Kumar, N. Gupta, Coupled common fixed points involving a \((\varphi , \psi)\)-contractive condition for mixed \(g\)-monotone operators in partially ordered metric spaces, Journal of Inequalities and Applications, (2012), 285
-
[39]
B. Samet, C. Vetro, P. Vetro, Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal. , 75 (2012), 2154–2165.
-
[40]
M. Mursaleen, S. A. Mohiuddine, R. P. Agarwal, Coupled fixed point theorems for \(\alpha-\psi\)-contractive type mappings in partially ordered metric spaces, Fixed Point Theory and Applications, 2012 (2012), 228
-
[41]
E. Karapinar, R. Agarwal, A note on ‘Coupled fixed point theorems for \(\alpha-\psi\)-contractive type mappings in partially ordered metric spaces, Fixed Point Theory and Applications, 2013 (2013), 216
-
[42]
M. Jain, K. Tas, B. E. Rhoades, N. Gupta, Coupled Fixed Point Theorems for Generalized Symmetric Contractions in Partially Ordered Metric Spaces and applications, J. Comput. Anal. Appl., 16 (2014), 438 – 454
-
[43]
M. Jain, K. Tas, S. Kumar, N. Gupta , Coupled Fixed Point Theorems for a Pair of Weakly Compatible Maps along with CLRg Property in Fuzzy Metric Spaces, J. Appl. Math., Article ID 961210, doi:10.1155/2012/961210., 2012 (2012), 13 pages
-
[44]
M. Jain, K. Tas, N. Gupta, Coupled common fixed point results involving \((\varphi , \psi)\)-contractions in ordered generalized metric spaces with application to integral equations, J. Inequal. Appl. , 2013 (2013), 372
-
[45]
M. Jain, K. Tas, A Unique Coupled Common Fixed Point Theorem for Symmetric \((\varphi , \psi)\)-Contractive Mappings in Ordered G -Metric Spaces with Applications, J. Appl. Math., Article ID 134712, doi:10.1155/2013/134712. , 2013 (2013), 13 pages
-
[46]
M. Jain, N. Gupta, C. Vetro, S. Kumar, Coupled Fixed Point Theorems for Symmetric \((\phi , \psi)\)-weakly Contractive Mappings in Ordered Partial Metric Spaces, The Journal of Mathematics and Computer Sciences , 7(4) (2013), 230 - 304
-
[47]
B. Samet, H. Yazidi, Coupled fixed point theorems in partially ordered \(\varepsilon\) -chainable Metric spaces, The Journal of Mathematics and Computer Science, 1(3) (2010), 142–151.
-
[48]
S. H. Rasouli, M. Bahrampour, A remark on the coupled fixed point theorems for mixed monotone operators in partially ordered metric spaces, The Journal of Mathematics and Computer Science , 3(2) (2011), 246–261.