Fixed Point Theory for Generalized Quasi-contraction Maps in Modular Metric Spaces
-
2377
Downloads
-
3855
Views
Authors
Hossein Rahimpoor
- Department of Mathematics, Payame Noor University, P.O. BOX 19395-3697,Tehran, Iran.
Ali Ebadian
- Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.
Madjid Eshaghi Gordji
- Department of Mathematics, P.O.Box 35195-363, Semnan, Iran.
Ali Zohri
- Department of Mathematics, Payame Noor University, P.O. BOX 19395-3697,Tehran, Iran.
Abstract
In this paper ,we improve the results of the existence of fixed point theory for generalized quasi contraction maps in modular metric spaces which extends the results of Y.Cho.et al,[Quasi-contraction mapping in modular metric spaces, Journal of Applied Mathematics Volume 2012 (2012), Article ID 907951, 5 pages] .
Share and Cite
ISRP Style
Hossein Rahimpoor, Ali Ebadian, Madjid Eshaghi Gordji, Ali Zohri, Fixed Point Theory for Generalized Quasi-contraction Maps in Modular Metric Spaces, Journal of Mathematics and Computer Science, 10 (2014), no. 1, 54-60
AMA Style
Rahimpoor Hossein, Ebadian Ali, Gordji Madjid Eshaghi, Zohri Ali, Fixed Point Theory for Generalized Quasi-contraction Maps in Modular Metric Spaces. J Math Comput SCI-JM. (2014); 10(1):54-60
Chicago/Turabian Style
Rahimpoor, Hossein, Ebadian, Ali, Gordji, Madjid Eshaghi, Zohri, Ali. "Fixed Point Theory for Generalized Quasi-contraction Maps in Modular Metric Spaces." Journal of Mathematics and Computer Science, 10, no. 1 (2014): 54-60
Keywords
- modular metric spaces
- quasi-contraction mapping
- fixed point .
MSC
References
-
[1]
P. Chaipunya, Y. J. Cho, P. Kumam, Geraghty-type theorems in Modular Metric Spaces with an application to partial differential equation, Fixed point theory and applications doi : 10.1186/1687-1847-2012-83. , 2012 (2012), 12
-
[2]
P. Chaipunya, C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed-Point Theorems for Multivalued Mappings in Modular Metric Spaces, Abstract and Applied Analysis , Article ID 503504, doi:10.1155/2012/503504. , 2012 (2012), 14 pages
-
[3]
Y. Cho, R. Saadati, G. Sadeghi, Quasi-contraction mapping in modular metric spaces, Journal of Applied Mathematics, Article ID 907951, doi:10.1155/2012/907951., 2012 (2012), 5 pages
-
[4]
V. V. Chistyakov, Modular metric spaces, I:Basic concepts, Nonlinear Analysis, 72 (2010), 1-14.
-
[5]
V. V. Chistyakov, Modular metric spaces, II:Application to superposition operators, Nonlinear Analysis, 72 (2010), 15-30.
-
[6]
V. V. Chistyakov, A fixed point theorem for contractions in modular metric spaces, Perprint submited to arXiv , (2011)
-
[7]
V. V. Chystyakov, Modular metric spaces generated by F-modulars, Folia Math. . MR2646913 (2011j:54030) , 15 (1) (2008), 3-24
-
[8]
L. B. Ḉiriḉ, A generalization of Banachs contraction principle, Proceedings of the American Mathematical Society, 45(2) (1974), 267-27
-
[9]
C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorem for contraction mappings in modular metric spaces, Fixed Point Theory and Applications doi:10.118611687-1812-2011-93., 2011 (2011), 93
-
[10]
J. Musielak, W. Orlicz, On modular spaces, Studia Mathematica , 18 (1959), 49-65.
-
[11]
J. Musielak, W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astron. Phys. , 7 (1959), 661-668
-
[12]
H. Nakano, Modular semi-ordered spaces, , Tokyo (1950)