Dual Smarandache Curves of a Curve Lying on Dual Unit Hyperbolic Sphere
-
2509
Downloads
-
4309
Views
Authors
Tanju Kahraman
- Celal Bayar University, Department of Mathematics, Faculty of Arts and Sciences, Manisa, Turkey.
Mehmet Onder
- Celal Bayar University, Department of Mathematics, Faculty of Arts and Sciences, Manisa, Turkey.
H. Huseyin Ugurlu
- Gazi University, Gazi Faculty of Education, Department of Secondary Education Science and Mathematics Teaching, Mathematics Teaching Program, Ankara, Turkey.
Abstract
In this paper, we give Darboux approximation for dual Smarandache curves of spacelike curve on dual
unit hyperbolic sphere \(\tilde{H}^2_0\). Firstly, we define the four types of dual Smarandache curves of a dual
hyperbolic curve \(\tilde{\alpha}(s)\). Then, we obtain the relationships between the dual curvatures of dual hyperbolic
curve \(\tilde{\alpha}(s)\) and its dual Smarandache curves. Finally, we give an example for Smarandache curves of a
spacelike curve on dual unit hyperbolic sphere \(\tilde{H}^2_0\).
Share and Cite
ISRP Style
Tanju Kahraman, Mehmet Onder, H. Huseyin Ugurlu, Dual Smarandache Curves of a Curve Lying on Dual Unit Hyperbolic Sphere, Journal of Mathematics and Computer Science, 14 (2015), no. 4, 326-344
AMA Style
Kahraman Tanju, Onder Mehmet, Ugurlu H. Huseyin, Dual Smarandache Curves of a Curve Lying on Dual Unit Hyperbolic Sphere. J Math Comput SCI-JM. (2015); 14(4):326-344
Chicago/Turabian Style
Kahraman, Tanju, Onder, Mehmet, Ugurlu, H. Huseyin. "Dual Smarandache Curves of a Curve Lying on Dual Unit Hyperbolic Sphere." Journal of Mathematics and Computer Science, 14, no. 4 (2015): 326-344
Keywords
- E. Study Mapping
- Smarandache curves
- Darboux approach
- Dual unit Hyperbolic sphere.
MSC
References
-
[1]
A. T. Ali, Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics, 2 (2010), 30-36.
-
[2]
W. Blaschke , Differential Geometrie and Geometrischke Grundlagen ven Einsteins Relativitasttheorie Dover, New York, (1945)
-
[3]
F. M. Dimentberg , The Screw Calculus and its Applications in Mechanics, English translation: AD680993, Clearinghouse for Federal and Scientific Technical Information, (Izdat. Nauka, Moscow, USSR) (1965)
-
[4]
H. H. Hacısalihoğlu , Hareket Geometrisi ve Kuaterniyonlar Teorisi, Gazi Üniversitesi Fen-Edb Fakültesi, (1983)
-
[5]
A. Küçük , O. Gürsoy , On the invariants of Bertrand trajectory surface offsets, App Math and Comp , 151 (2004), 763-773.
-
[6]
B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press London , (1983)
-
[7]
M. Önder, H. H. Uğurlu, Dual Darboux Frame of a Timelike Ruled Surface and Darboux 3 Approach to Mannheim Offsets of Timelike Ruled Surfaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. , DOI 10.1007/s40010-013-0067-7. ()
-
[8]
A. Taleshian, N. Asghari, On Lorentzian \(\alpha\)-Sasakian manifold, TJMCS , 4(3) (2012), 295-300.
-
[9]
M. Turgut, S. Yilmaz, Smarandache Curves in Minkowski Space-time, Int. J. Math. Comb., 3 (2008), 51-55.
-
[10]
H. H. Uğurlu, A. Çalışkan , The Study Mapping for Directed Spacelike and Timelike Lines in Minkowski 3-Space \(\mathbb{R}^3_1\), Mathematical and Computational Applications , 1(2) (1996), 142-148.
-
[11]
H. H. Uğurlu, A. Çalışkan , Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike Yüzeyler Geometrisi, Celal Bayar Üniversitesi Yayınları Yayın , No: 0006 (2012)
-
[12]
G. R. Veldkamp , On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics, Mechanism and Mach Theory , 11 (1976), 141-156.