Coincidence best proximity points for geraghty type proximal cyclic contractions
-
2407
Downloads
-
6324
Views
Authors
Somayya Komal
- Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
Azhar Hussain
- Department of Mathematics, University of Sargodha, Sargodha-40100, Pakistan
Nazra Sultana
- Department of Mathematics, University of Sargodha, Sargodha-40100, Pakistan
Poom Kumam
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
Abstract
In this paper, we study the notions of generalized Geraghty
proximal cyclic contractions for non-self mapping and obtain coincidence best proximity point theorems in the framework of complete metric
spaces. Some examples are given to show the validity of our results. Our results extended and unify many existing results in the literature.
Share and Cite
ISRP Style
Somayya Komal, Azhar Hussain, Nazra Sultana, Poom Kumam, Coincidence best proximity points for geraghty type proximal cyclic contractions, Journal of Mathematics and Computer Science, 18 (2018), no. 1, 98--114
AMA Style
Komal Somayya, Hussain Azhar, Sultana Nazra, Kumam Poom, Coincidence best proximity points for geraghty type proximal cyclic contractions. J Math Comput SCI-JM. (2018); 18(1):98--114
Chicago/Turabian Style
Komal, Somayya, Hussain, Azhar, Sultana, Nazra, Kumam, Poom. "Coincidence best proximity points for geraghty type proximal cyclic contractions." Journal of Mathematics and Computer Science, 18, no. 1 (2018): 98--114
Keywords
- \(\alpha\)-Geraghty proximal contraction of first and second kind
- \(\alpha\)-proximal cyclic contraction
- \(\alpha\)-proximal admissible maps
MSC
References
-
[1]
A. Abkar, M. Gabeleh, Generalized cyclic contractions in partially ordered metric spaces, Optim. Lett., 6 (2012), 1819– 1830
-
[2]
A. Abkar, M. Gabeleh, Global optimal solutions of noncyclic mappings in metric spaces, J. Optim. Theory Appl., 153 (2012), 298–305
-
[3]
M. Abbas, A. Hussain, P. Kumam , A coincidence best proximity point problem in G-metric spaces, Abstr. Appl. Anal., 2015 (2015), 12 pages
-
[4]
R. P. Agarwal, M. A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. , 87 (2008), 109–116
-
[5]
M. A. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal., 70 (2009), 3665–3671.
-
[6]
A. Amini-Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal., 72 (2010), 2238–2242
-
[7]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181
-
[8]
J. Caballero, J. Harjani, K. Sadarangani, A best proximity point theorem for Geraghty-contractions, Fixed Point Theory Appl., 2012 (2012 ), 9 pages
-
[9]
S.-H. Cho, J.-S. Bae, E. Karapınar, Fixed point theorems for \(\alpha\)-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2013 (2013 ), 11 pages
-
[10]
C. Di Bari, T. Suzuki, C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal., 69 (2008), 3790–3794
-
[11]
A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006
-
[12]
M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608
-
[13]
E. Hille, R. S. Phillips, Functional analysis and semi-groups, rev. ed., American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, R. I.,/ 31 (1957)
-
[14]
L.-G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476
-
[15]
M. A. Khamsi, V. Y. Kreinovich, Fixed point theorems for dissipative mappings in complete probabilistic metric spaces, Math. Japon., 44 (1996), 513–520
-
[16]
W. A. Kirk, S. Reich, P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim., 24 (2003), 851–862
-
[17]
P. Kumam, P. Salimi, C. Vetro, Best proximity point results for modified \(\alpha\)-proximal C-contraction mappings, Fixed Point Theory Appl., 2014 (2014 ), 16 pages
-
[18]
C. Mongkolkeha, Y. J. Cho, P. Kumam, Best proximity points for Geraghty’s proximal contraction mappings, Fixed Point Theory Appl., 2013 (2013 ), 17 pages
-
[19]
B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257– 290
-
[20]
S. Sadiq Basha, Extensions of Banach’s contraction principle, Numer. Funct. Anal. Optim., 31 (2010), 569–576
-
[21]
S. Sadiq Basha, Best proximity point theorems generalizing the contraction principle, Nonlinear Anal., 74 (2011), 5844– 5850
-
[22]
S. Sadiq Basha, Best proximity points: global optimal approximate solutions, J. Global Optim., 49 (2011), 15–21
-
[23]
S. Sadiq Basha, Common best proximity points: global minimization of multi-objective functions, J. Global Optim., 54 (2012), 367–373
-
[24]
S. Sadiq Basha, N. Shahzad, R. Jeyaraj, Best proximity points: approximation and optimization, Optim. Lett., 7 (2013), 145–155
-
[25]
S. Sadiq Basha, P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory, 103 (2000), 119–129
-
[26]
N. Shahzad, S. Sadiq Basha, R. Jeyaraj , Common best proximity points: global optimal solutions, J. Optim. Theory Appl., 148 (2011), 69–78
-
[27]
C. Vetro, Best proximity points: convergence and existence theorems for p-cyclic mappings, Nonlinear Anal., 73 (2010), 2283–2291
-
[28]
K. Włodarczyk, R. Plebaniak, A. Banach, Best proximity points for cyclic and noncyclic set-valued relatively quasiasymptotic contractions in uniform spaces, Nonlinear Anal., 70 (2009), 3332–3341
-
[29]
K. Włodarczyk, R. Plebaniak, A. Banach, Erratum to: ”Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces” [Nonlinear Anal., (2008), doi: 10.1016/j.na.2008.04.037] [ MR2503079], Nonlinear Anal., 71 (2009), 3585–3586
-
[30]
K. Włodarczyk, R. Plebaniak, C. Obczyński, Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces, Nonlinear Anal., 72 (2010), 794–805
-
[31]
S.-K. Yang, J.-S. Bae, S.-H. Cho, Coincidence and common fixed and periodic point theorems in cone metric spaces, Comput. Math. Appl., 61 (2011), 170–177