Numerical Solution of Maxwell Equations Using Local Weak Form Meshless Techniques
-
4147
Downloads
-
5423
Views
Authors
S. Sarabadan
- Department of Mathematics, Imam Hossein University, P.O. Box 16895-198, Tehran, Iran.
M. Shahrezaee
- Department of Mathematics, Imam Hossein University, P.O. Box 16895-198, Tehran, Iran.
J. A. Rad
- Department of Computer Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Evin, P.O. Box 198396-3113,Tehran,Iran.
K. Parand
- Department of Computer Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Evin, P.O. Box 198396-3113,Tehran,Iran.
Abstract
The aim of this work is to propose a numerical approach based on the local weak formulations and finite difference scheme to solve the Maxwell equation, especially in this paper we select and analysis local radial point interpolation (LRPI) based on multiquadrics radial basis functions (MQ-RBFs). LRPI scheme is the truly meshless method, because, a traditional non-overlapping, continuous mesh is not required, either for the construction of the shape functions, or for the integration of the local sub-domains. These shape functions which are constructed by point interpolation method using the radial basis functions have delta function property which allows one to easily impose essential boundary conditions. One numerical example is presented showing the behavior of the solution and the efficiency of the proposed method.
Share and Cite
ISRP Style
S. Sarabadan, M. Shahrezaee, J. A. Rad, K. Parand, Numerical Solution of Maxwell Equations Using Local Weak Form Meshless Techniques, Journal of Mathematics and Computer Science, 13 (2014), no. 2, 168-185
AMA Style
Sarabadan S., Shahrezaee M., Rad J. A., Parand K., Numerical Solution of Maxwell Equations Using Local Weak Form Meshless Techniques. J Math Comput SCI-JM. (2014); 13(2):168-185
Chicago/Turabian Style
Sarabadan, S., Shahrezaee, M., Rad, J. A., Parand, K.. "Numerical Solution of Maxwell Equations Using Local Weak Form Meshless Techniques." Journal of Mathematics and Computer Science, 13, no. 2 (2014): 168-185
Keywords
- Meshless weak form
- Maxwell equation
- Finite differences
- Local radial point interpolation.
MSC
References
-
[1]
T. Zhu, J. D. Zhang, S. N. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, Comput. Mech., 21 (1998), 223–235.
-
[2]
J. Wang, G. Liu, A point interpolation meshless method based on radial basis functions, Int. J. Numer. Meth. Eng., 54 (2002), 1623–1648.
-
[3]
G. Liu, Y. Gu, An Introduction to Meshfree Methods and Their Programing, Springer, Netherlands (2005)
-
[4]
S. N. Atluri, H. G. Kim, J. Y. Cho, A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods, Comput. Mech., 24 (1999), 348–372.
-
[5]
T. Zhu, J. D. Zhang, S. N. Atluri , A meshless local boundary integral equation (LBIE) for solving nonlinear problems, Comput. Mech. , 22 (1998), 174–186.
-
[6]
T. Zhu, J. D. Zhang, S. N. Atluri , A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems , Eng. Anal. Bound. Elem., 23 (1999), 375–389.
-
[7]
J. Sladek, V. Sladek, C. Zhang , Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method, Comput. Mat. Sci. , 28 (2003), 494–504.
-
[8]
J. Sladek, V. Sladek, J. Krivacek, C. Zhang, Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids, Comput. Mech. , 32 (2003), 169–176.
-
[9]
A. Shirzadi, V. Sladek, J. Sladek, A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation, Eng. Anal. Bound. Elem., 37 (2013), 8–14.
-
[10]
S. M. Hosseini, V. Sladek, J. Sladek, Application of meshless local integral equations to two dimensional analysis of coupled non-fick diffusion-elasticity, Eng. Anal. Bound. Elem. , 37 (2013), 603–615.
-
[11]
V. Sladek, J. Sladek, Local integral equations implemented by MLS-approximation and analytical integrations, Eng. Anal. Bound. Elem., 34 (2010), 904–913.
-
[12]
X. Li , Meshless galerkin algorithms for boundary integral equations with moving least square approximations, Appl. Numer. Math. , 61 (2011), 1237–1256.
-
[13]
J. C. Maxwell , A dynamical theory of the electromagnetic field, R. Soc. Trans. , 155 (1865), 459–512.
-
[14]
O. Heaviside, On the forces, stresses and fluxes of energy in the electromagnetic field, Phil. Trans. R. Soc., 183 (1892), 423–480.
-
[15]
K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation , 14 (1966), 302–307.
-
[16]
F. B. Belgacem, A. Buffa, Y. Maday, The mortar finite element method for 3D Maxwell equations: first results, SIAM J. Numer. Anal. , 39 (2002), 880–901.
-
[17]
G. Rodrigue, D. White, A vector finite element time-domain method for solving Maxwell’s equations on unstructured hexahedral grids, SIAM J. Sci. Comput., 23 (2001), 683–701.
-
[18]
S. J. Lai, B. Z. Wang, Y. Dua , Meshless radial basis function method for transient electromagnetic computations, IEEE Trans. Magn., 44 (2008), 2288–2295.
-
[19]
G. Liu, Y. Gu, A point interpolation method for two-dimensional solid, Int. J. Numer. Meth. Eng. , 50 (2001), 937–951.
-
[20]
G. Liu , Meshfree methods: moving beyond the finite element method, Boca Raton: Taylor and Francis/CRC Press, (2009)
-
[21]
G. Liu, Y. Gu, A matrix triangularization algorithm for the polynomial point interpolation method , Comput. Meth. Appl. Mech. Eng. , 192 (2003), 2269–2295.
-
[22]
E. J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates, Comput. Math. Appl. , 19 (1990), 127–145.
-
[23]
E. J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics II. solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19 (1990), 147–161.
-
[24]
G. E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, Vanderbilt University Press, Nashville (1997)
-
[25]
G. Liu, Y. Gu, A local radial point interpolation method (LRPIM) for free vibration analysis of 2-d solids, J. Sound. Vib., 246 (2001), 29–46.
-
[26]
G. R. Liu, G. Y. Zhang, Y. T. Gu, Y. Y. Wang, A meshfree radial point interpolation method (RPIM) for three-dimensional solids , Comput. Mech. , 36 (2005), 421–430.
-
[27]
M. Dehghan, R. Salehi , A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations, J. Comput. Appl. Math. , 268 (2014), 93-110
-
[28]
J. Li , Unified Analysis of Leap-Frog Methods for Solving Time-Domain Maxwells Equations in Dispersive Media, J. Sci. Comput., 47 (2011), 1-26.