On a \(q\)-analogue degenerate Carlitz's type Daehee polynomials and numbers
-
1791
Downloads
-
2885
Views
Authors
Jongkyum Kwon
- Department of Mathematics Education and ERI, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Yunjae Kim
- Department of Mathematics, Dong-A University, Busan, 49315, Republic of Korea.
Gyoyong Sohn
- Department of Mathematics Education, Daegu National University of Education, Daegu, 705-715, Republic of Korea.
Jin-Woo Park
- Department of Mathematics Education, Daegu University, Gyeongsangbuk-do, 38453, Republic of Korea.
Abstract
Studies on degenerate versions of Stirling, Bernoulli and Eulerian numbers started by [L. Carlitz, Utilitas Math., \(\bf 15\) (1979), 51--88]. In recent years, many mathematicians have studied degenerate version of various special polynomials and numbers. In this paper, we introduce the \(q\)-analogue degenerate Carlitz's type Daehee and higher-order degenerate Carlitz's type Daehee polynomials and numbers. Also, we study some explicit identities and properties for the \(q\)-analogue degenerate Carlitz's type Daehee polynomials and numbers and higher-order \(q\)-analogue degenerate Carlitz's type Daehee polynomials and numbers arising from \(p\)-adic invariant \(q\)-integral on \(\mathbb{Z}_p\).
Share and Cite
ISRP Style
Jongkyum Kwon, Yunjae Kim, Gyoyong Sohn, Jin-Woo Park, On a \(q\)-analogue degenerate Carlitz's type Daehee polynomials and numbers, Journal of Mathematics and Computer Science, 19 (2019), no. 2, 136--142
AMA Style
Kwon Jongkyum, Kim Yunjae, Sohn Gyoyong, Park Jin-Woo, On a \(q\)-analogue degenerate Carlitz's type Daehee polynomials and numbers. J Math Comput SCI-JM. (2019); 19(2):136--142
Chicago/Turabian Style
Kwon, Jongkyum, Kim, Yunjae, Sohn, Gyoyong, Park, Jin-Woo. "On a \(q\)-analogue degenerate Carlitz's type Daehee polynomials and numbers." Journal of Mathematics and Computer Science, 19, no. 2 (2019): 136--142
Keywords
- \(p\)-Adic \(q\)-integral of \(f\) on \(\mathbb{Z}_p\)
- degenerate Carlitz's type Daehee polynomials and numbers
- degenerate \(q\)-Bernoulli polynomials
MSC
References
-
[1]
A. Abdelrazec, J. Belair, C. H. Shan, H. P. Zhu, Modeling the spread and control of dengue with limited public health resources, Math. Biosci., 271 (2016), 136--145
-
[2]
F. B. Agusto, S. Bewick, W. F. Fagan, Mathematical model of Zika virus with vertical transmission, Infectious Disease Modelling, 2 (2017), 244--267
-
[3]
E. Beretta, V. Capasso, D. G. Garao, A mathematical model for malaria transmission with asymptomatic carriers and two age groups in the human population, Math. Biosci., 300 (2018), 87--101
-
[4]
E. Bonyah, K. O. Okosun, Mathematical modeling of Zika virus, Asian Pacific J. Tropical Disease, 6 (2016), 673--679
-
[5]
N. Chitnis, J. M. Cushing, J. M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67 (2006), 24--45
-
[6]
N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272--1296
-
[7]
E. Dantas, M. Tosin, A. Cunha, Calibration of a SEIR-SEI epidemic model to describe the Zika virus outbreak in Brazil, Appl. Math. Comput., 338 (2018), 249--259
-
[8]
Y. Dumont, F. Chiroleu, Vector control for the chikungunya disease, Math. Biosci. Eng., 7 (2010), 313--345
-
[9]
Y. Dumont, F. Chiroleu, C. Domerg, On a temporal model for the chikungunya disease: modeling, theory and numerics, Math. Biosci., 213 (2008), 80--91
-
[10]
Y. Dumont, J. M. Tchuenche, Mathematical studies on the sterile insect technique for the chikungunya disease and aedes albopictus, J. Math. Biol., 65 (2012), 809--854
-
[11]
A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. Real World Appl., 11 (2010), 2253--2263
-
[12]
A. M. Elaiw, Global properties of a class of virus infection models with multitarget cells, Nonlinear Dynam., 69 (2012), 423--435
-
[13]
A. M. Elaiw, T. O. Alade, S. M. Alsulami, Analysis of latent CHIKV dynamics models with general incidence rate and time delays, J. Biol. Dyn., 12 (2018), 700--730
-
[14]
A. M. Elaiw, T. O. Alade, S. M. Alsulami, Analysis of within-host CHIKV dynamics models with general incidence rate, Int. J. Biomath., 11 (2018), 25 pages
-
[15]
A. M. Elaiw, S. E. Almalki, A. D. Hobiny, Stability of CHIKV infection models with CHIKV-monocyte and infected-monocyte saturated incidences, AIP Advances, 9 (2019), 12 pages
-
[16]
A. M. Elaiw, N. A. Almuallem, Global properties of delayed-HIV dynamics models with differential drug efficacy in cocirculating target cells, Appl. Math. Comput., 265 (2015), 1067--1089
-
[17]
A. M. Elaiw, N. A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, Math. Methods Appl. Sci., 39 (2016), 4--31
-
[18]
A. M. Elaiw, N. H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal. Real World Appl., 26 (2015), 161--190
-
[19]
A. M. Elaiw, N. H. AlShamrani, Stability of a general delay-distributed virus dynamics model with multi-staged infected progression and immune response, Math. Methods Appl. Sci., 40 (2017), 699--719
-
[20]
A. M. Elaiw, N. H. AlShamrani, Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays, Math. Methods Appl. Sci., 41 (2018), 6645--6672
-
[21]
A. M. Elaiw, S. A. Azoz, Global properties of a class of HIV infection models with Beddington-DeAngelis functional response, Math. Methods Appl. Sci., 36 (2013), 383--394
-
[22]
A. M. Elaiw, E. K. Elnahary, A. A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV, Adv. Difference Equ., 2018 (2018), 36 pages
-
[23]
A. M. Elaiw, I. Hassanien, S. A. Azoz, Global stability of HIV infection models with intracellular delays, J. Korean Math. Soc., 49 (2012), 779--794
-
[24]
A. M. Elaiw, A. A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays, Math. Methods Appl. Sci., 40 (2017), 5863--5880
-
[25]
A. M. Elaiw, A. A. Raezah, B. S. Alofi, Dynamics of delayed pathogen infection models with pathogenic and cellular infections and immune impairment, AIP Advances, 8 (2018), 14 pages
-
[26]
A. M. Elaiw, A. A. Raezah, S. A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Adv. Difference Equ., 2018 (2018), 25 pages
-
[27]
L. Esteva, C. Vargas, A model for dengue disease with variable human population, J. Math. Biol., 38 (1999), 220--240
-
[28]
A. D. Hobiny, A. M. Elaiw, A. A. Almatrafi, Stability of delayed pathogen dynamics models with latency and two routes of infection, Adv. Difference Equ., 2018 (2018), 26 pages
-
[29]
G. Huang, Y. Takeuchi, W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693--2708
-
[30]
A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879--883
-
[31]
X. L. Lai, X. F. Zou, Modelling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math., 74 (2014), 898--917
-
[32]
X. L. Lai, X. F. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl., 426 (2015), 563--584
-
[33]
F. Li, J. L. Wang, Analysis of an HIV infection model with logistic target cell growth and cell-to-cell transmission, Chaos Solitons Fractals, 81 (2015), 136--145
-
[34]
X. Z. Liu, P. Stechlinski, Application of control strategies to a seasonal model of chikungunya disease, Appl. Math. Model., 39 (2015), 3194--3220
-
[35]
K. M. Long, M. T. Heise, Protective and pathogenic responses to chikungunya virus infection, Curr. Trop. Med. Rep., 2 (2015), 13--21
-
[36]
S. Mandal, R. R. Sarkar, S. Sinha, Mathematical models of malaria-a review, Malaria J., 10 (2011), 19 pages
-
[37]
C. A. Manore, K. S. Hickmann, S. Xu, H. J. Wearing, J. M. Hyman, Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, J. Theoret. Biol., 356 (2014), 174--191
-
[38]
D. Moulay, M. Aziz-Alaoui, M. Cadivel, The chikungunya disease: modeling, vector and transmission global dynamics, Math. Biosci., 229 (2011), 50--63
-
[39]
D. Moulay, M. Aziz-Alaoui, H.-D. Kwon, Optimal control of chikungunya disease: larvae reduction, treatment and prevention, Math. Biosci. Eng., 9 (2012), 369--392
-
[40]
S. M. Raimundo, M. Amaku, E. Massad, Equilibrium analysis of a yellow fever dynamical model with vaccination, Comput. Math. Methods Med., 2015 (2015), 12 pages
-
[41]
H. Y. Shu, Y. M. Chen, L. Wang, Impacts of the cell-free and cell-to-cell infection modes on viral dynamics, J. Dynam. Differential Equations, 30 (2018), 1817--1836
-
[42]
H. Y. Shu, L. Wang, J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 1280--1302
-
[43]
J. J. Tewaa, J. L. Dimi, S. Bowong, Lyapunov functions for a dengue disease transmission model, Chaos Solitons Fractals, 39 (2009), 936--941
-
[44]
J. L. Wang, J. Y. Lang, X. F. Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Anal. Real World Appl., 34 (2017), 75--96
-
[45]
Y. Wang, X. N. Liu, Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays, Math. Comput. Simulation, 138 (2017), 31--48
-
[46]
L. Yakob, A. C. Clements, A mathematical model of chikungunya dynamics and control: the major epidemic on Reunion Island, PLoS One, 8 (2013), 6 pages
-
[47]
Y. Yang, L. Zou, S. G. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015), 183--191
-
[48]
M. Zhu, Y. Xu, A time-periodic dengue fever model in a heterogeneous environment, Math. Comput. Simulation, 155 (2019), 115--129