Dynamics of some parametric operators from the class of \( \zeta^{(as)}\)-QSO
-
1817
Downloads
-
2867
Views
Authors
Basma M. Al-Shutnawi
- Department of Mathematics, Faculty of Science, Tafila Technical University, Tafila 66110, Jordan.
Abstract
In this paper the quadratic stochastic operators (QSO) were considered, these operators describe the population dynamic system. Some quadratic stochastic operators were studied by Lotka and Volterra. Moreover, we discuss the dynamic of some parametric operators from the class of \( \zeta^{(as)}\)-QSO.
Share and Cite
ISRP Style
Basma M. Al-Shutnawi, Dynamics of some parametric operators from the class of \( \zeta^{(as)}\)-QSO, Journal of Mathematics and Computer Science, 19 (2019), no. 3, 212--217
AMA Style
Al-Shutnawi Basma M., Dynamics of some parametric operators from the class of \( \zeta^{(as)}\)-QSO. J Math Comput SCI-JM. (2019); 19(3):212--217
Chicago/Turabian Style
Al-Shutnawi, Basma M.. "Dynamics of some parametric operators from the class of \( \zeta^{(as)}\)-QSO." Journal of Mathematics and Computer Science, 19, no. 3 (2019): 212--217
Keywords
- Quadratic stochastic operators
- \(\zeta^{(as)}\)-QSO
- fixed points
MSC
References
-
[1]
S. Bernstein, Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Statistics, 13 (1942), 53--61
-
[2]
R. N. Ganikhodzhaev, On a family of quadratic stochastic operators acting in $S^ 2$, Dokl. Akad. Nauk UzSSR., 1 (1989), 3--5
-
[3]
R. N. Ganikhodzhaev, Quadratic stochastic operators, Lyapunov functions, and tournaments, Russian Acad. Sci. Sb. Math., 76 (1993), 489--506
-
[4]
R. N. Ganikhodzhaev, Map of fixed points and Lyapunov functions for a class of discrete dynamical systems, Math. Notes, 56 (1994), 1125--1131
-
[5]
R. N. Ganikhodzhaev, D. B. Èshmamatova, Quadratic automorphisms of a simplex and the asymptotic behavior of their trajectories (Russian), Vladikavkaz. Mat. Zh., 8 (2006), 12--28
-
[6]
J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection, Cambridge University Press, Cambridge (1988)
-
[7]
J. Hofbauer, V. Hutson, W. Jansen, Coexistence for systems governed by difference equations of Lotka-Volterra type, J. Math. Biol., 25 (1987), 553--570
-
[8]
S.-T. Li, D.-M. Li, G.-K. Qu, On stability and chaos of discrete population model for a singlespecies with harvesting, J. Harbin Uni. Sci. Tech., 6 (2006), 10 pages
-
[9]
A. J. Lotka, Undamped oscillations derived from the law of mass action, J. Am. Chem. Soc., 42 (1920), 1595--1599
-
[10]
Y. I. Lyubich, Mathematical Structures in Population Genetics, Springer-Verlag, Berlin (1992)
-
[11]
F. Mukhamedov, I. Qaralleh, W. N. F. A. W. Rozali, On $\xi(a)$--quadratic stochastic operators on 2D simplex, Sains Malaysiana, 43 (2014), 1275--1281
-
[12]
F. Mukhamedov, M. Saburov, I. Qaralleh, Classification of $\xi^{(s)}$--Quadratic Stochastic Operators on 2D simplex, J. Phys. Conf. Ser., 2013 (2013), 9 pages
-
[13]
F. Mukhamedov, M. Saburov, I. Qaralleh, On $\xi^{(s)}$--quadratic stochastic operators on two dimensional simplex and their behavior, Abstr. Appl. Anal., 2013 (2013), 12 pages
-
[14]
M. Plank, Hamiltonian structures for the $n$-dimensional Lotka-Volterra equations, J. Math. Phys., 36 (1995), 3520--3534
-
[15]
F. E. Udwadia, N. Raju, Some global properties of a pair of coupled maps: quasi--symmetry, periodicity, and synchronicity, Phys. D, 111 (1998), 16--26
-
[16]
V. Volterra, Lois de fluctuation de la population de plusieurs especes coexistant dans le même milieu, Association Française pour l'Avancement des Sciences, Lyon (1926)