A new extended B-spline approximation technique for second order singular boundary value problems arising in physiology
-
2307
Downloads
-
5056
Views
Authors
Imtiaz Wasim
- Department of Mathematics, University of Sargodha, Sargodha, 40100, Pakistan.
Muhammad Abbas
- Department of Mathematics, University of Sargodha, Sargodha, 40100, Pakistan.
Muhammad Kashif Iqbal
- Department of Mathematics, , Government College University, Faisalabad, 38000, Pakistan.
Abstract
In this study, we have explored the approximate solution of \(2^{nd}\) order singular boundary value problems (SBVP's) using extended cubic B-spline (ECBS) collocation approach. The accuracy of the numerical algorithm has been enhanced by means of a novel ECBS approximation for $2^{nd}$ order derivative. To endorse our claim, few test examples have been considered and the experimental results are compared with the already existing methods. It is observed that the proposed technique is more accurate and efficient in comparison to the existing techniques on the topic.
Share and Cite
ISRP Style
Imtiaz Wasim, Muhammad Abbas, Muhammad Kashif Iqbal, A new extended B-spline approximation technique for second order singular boundary value problems arising in physiology, Journal of Mathematics and Computer Science, 19 (2019), no. 4, 258--267
AMA Style
Wasim Imtiaz, Abbas Muhammad, Iqbal Muhammad Kashif, A new extended B-spline approximation technique for second order singular boundary value problems arising in physiology. J Math Comput SCI-JM. (2019); 19(4):258--267
Chicago/Turabian Style
Wasim, Imtiaz, Abbas, Muhammad, Iqbal, Muhammad Kashif. "A new extended B-spline approximation technique for second order singular boundary value problems arising in physiology." Journal of Mathematics and Computer Science, 19, no. 4 (2019): 258--267
Keywords
- Singular boundary value problems
- extended B-spline functions
- quasi-linearization technique
- extended B-spline collocation method
MSC
- 34B15
- 34B16
- 74H15
- 65L10
- 65L11
References
-
[1]
M. Abbas, A. A. Majid, A. I. M. Ismail, A. Rashid, The application of cubic trigonometric B-spline to the numerical solution of the hyperbolic problems, Appl. Math. Comput., 239 (2014), 74--88
-
[2]
M. Abukhaled, S. A. Khuri, A. Sayfy, A numerical approach for solving a class of singular boundary value problems arising in physiology, Int. J. Numer. Anal. Model., 8 (2011), 353--363
-
[3]
E. Babolian, A. Iftikhari, A. Saadarmandi, A Sinc-Galerkin technique for the numerical solution of a class of singular boundary value problems, Comput. Appl. Math., 34 (2015), 45--63
-
[4]
N. Caglar, H. Caglar, B-spline solution of singular boundary value problems, Appl. Math. Comput., 182 (2006), 1509--1513
-
[5]
Z. D. Cen, Numerical study for a class of singular two-point boundary value problems using Green’s functions, Appl. Math. Comput., 183 (2006), 10--16
-
[6]
M. M. Chawala, R. Subramanian, H. L. Sathi, A fourth order method for a singular two-point boundary value problem, BIT Numer. Math., 28 (1988), 88--97
-
[7]
U. Flesch, The distribution of heat sources in the human head: a theoretical consideration, J. Theor. Biol., 54 (1975), 285--287
-
[8]
D. J. Fyfe, The use of cubic splines in the solution of two-point boundary value problems, Comput. J., 12 (1969/70), 188--192
-
[9]
J. B. Garner, R. Shivaji, Diffusion problems with a mixed nonlinear boundary condition, J. Math. Anal. Appl., 148 (1990), 422--430
-
[10]
J. Goh, A. A. Majid, A. I. M. Ismail, Extended cubic uniform B-spline for a class of singular boundary value problems, Sci. Asia, 37 (2011), 79--82
-
[11]
J. Goh, A. A. Majid, A. I. M. Ismail, A quartic B-spline for second-order singular boundary value problems, Comput. Math. Appl., 64 (2012), 115--120
-
[12]
M. K. Iqbal, M. Abbas, N. Khalid, New Cubic B-spline Approximation for Solving Non-linear Singular Boundary Value Problems Arising in Physiology, Comm. Math. Appl., 9 (2018), 377--392
-
[13]
M. K. Iqbal, M. Abbas, I. Wasim, New cubic B-spline approximation for solving third order Emden–Flower type equations, Appl. Math. Comput., 331 (2018), 319--333
-
[14]
M. K. Iqbal, M. Abbas, B. Zafar, New Quartic B-Spline Approximation for Numerical Solution of Third Order Singular Boundary Value Problems, Punjab. Univ. J. Math., 51 (2019), 43--59
-
[15]
S. A. Khuri, A. Sayfy, A novel approach for the solution of a class of singular boundary value problems arising in physiology, Math. Comp. Modelling, 52 (2010), 626--636
-
[16]
M. Kumar, Y. Gupta, Methods for solving singular boundary value problems using splines: a review, J. Appl. Math. Comput., 32 (2010), 265--278
-
[17]
F. G. Lang, X. P. Xu, A new cubic B-spline method for approximating the solution of a class of nonlinear second-order boundary value problem with two dependent variables, Sci. Asia, 40 (2014), 444--450
-
[18]
P. M. Lima, M. P. Carpentier, Iterative methods for a singular boundary-value problem, J. Comput. Appl. Math., 111 (1999), 173--186
-
[19]
S. H. Lin, Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics, J. Theor. Biol., 60 (1976), 449--457
-
[20]
D. L. S. McElwain, A re-examination of oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics, J. Theor. Biol., 71 (1978), 255--263
-
[21]
M. Mohsenyzadeh, K. Maleknejad, R. Ezzati, A numerical approach for the solution of a class of singular boundary value problems arising in physiology, Adv. Difference Equ., 2015 (2015), 10 pages
-
[22]
R. K. Pandey, A. K. Singh, On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology, J. Comput. Appl. Math., 166 (2004), 553--564
-
[23]
K. Parand, M. Dehghan, A. Z. Rezaei, S. M. Ghaderi, An approximation algorithm for the solution of the nonlinear Lane--Emden type equations arising in astrophysics using Hermite functions collocation method, Comput. Phys. Comm., 181 (2010), 1096--1108
-
[24]
J. Rashidinia, R. Mohammadi, R. Jalilian, The numerical solution of non-linear singular boundary value problems arising in physiology, Appl. Math. Comput., 185 (2007), 360--367
-
[25]
A. S. V. Ravi Kanth, Cubic spline polynomial for non-linear singular two-point boundary value problems, Appl. Math. Comput., 189 (2007), 2017--2022
-
[26]
A. S. V. Ravi Kanth, K. Aruna, He's variational iteration method for treating nonlinear singular boundary value problems, Comput. Math. Appl., 60 (2010), 821--829
-
[27]
R. D. Russell, L. F. Shampine, Numerical methods for singular boundary value problems, SIAM J. Numer. Anal., 12 (1975), 13--36
-
[28]
L. F. Shampine, Singular boundary value problems for ODEs, Appl. Math. Comput., 138 (2003), 99--112
-
[29]
S. Sharifi, J. Rashidinia, Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method, Appl. Math. Comput., 281 (2016), 28--38
-
[30]
R. Singh, J. Kumar, An efficient numerical technique for the solution of nonlinear singular boundary value problems, Comput. Phys. Commun., 185 (2014), 1282--1289
-
[31]
R. Singh, A.-M. Wazwaz, J. Kumar, An efficient semi-numerical technique for solving nonlinear singular boundary value problems arising in various physical models, Int. J. Comput. Math., 93 (2016), 1330--1346
-
[32]
W. Y. Wang, M. G. Cui, B. Han, A new method for solving a class of singular twopoint boundary value problems, Appl. Math. Comput., 206 (2008), 721--727
-
[33]
Y. L. Wang, H. Yu, F. G. Tan, S. G. Li, Using an effective numerical method for solving a class of Lane-Emden equations, Abstr. Appl. Anal., 2014 (2014), 8 pages
-
[34]
A. M. Wazwaz, The variational iteration method for solving nonlinear singular boundary value problems arising in various physical models, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3881--3886
-
[35]
L.-J. Xie, C.-L. Zhou, S. Xu, An effective numerical method to solve a class of nonlinear singular boundary value problems using improved differential transform method, Springer Plus, 5 (2016), 21 pages