Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function
Volume 20, Issue 2, pp 122--130
http://dx.doi.org/10.22436/jmcs.020.02.05
Publication Date: October 29, 2019
Submission Date: July 18, 2019
Revision Date: September 05, 2019
Accteptance Date: September 17, 2019
-
1937
Downloads
-
5097
Views
Authors
Owais Khan
- Department of Applied Mathematics, Aligarh Muslim University, Aligarh-202002, India.
Serkan Araci
- Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, TR-27410, Gaziantep, Turkey.
Mohd Saif
- Department of Applied Mathematics, Aligarh Muslim University, Aligarh-202002, India.
Abstract
Fractional calculus is allowing integrals and derivatives of any positive order (the term `fractional' kept only for historical reasons), which can be considered a branch of mathematical physics which mainly deals with integro-differential equations, where integrals are of convolution form with weakly singular kernels of power-law type. In recent decades fractional calculus has won more and more interest in applications in several fields of applied sciences. In this line, our main object to investigate image formulas of generalized fractional hypergeometric operators involving the product of Mathieu-type series and generalized Mittag-Leffler function. We also consider some interesting special cases of derived results by specializing suitable value of the parameters.
Share and Cite
ISRP Style
Owais Khan, Serkan Araci, Mohd Saif, Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function, Journal of Mathematics and Computer Science, 20 (2020), no. 2, 122--130
AMA Style
Khan Owais, Araci Serkan, Saif Mohd, Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function. J Math Comput SCI-JM. (2020); 20(2):122--130
Chicago/Turabian Style
Khan, Owais, Araci, Serkan, Saif, Mohd. "Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function." Journal of Mathematics and Computer Science, 20, no. 2 (2020): 122--130
Keywords
- Fractional calculus operators
- Mathieu-type series
- generalized Mittag-Leffler function
- Fox-Wright function
MSC
References
-
[1]
P. Agarwal, J. J. Nieto, Some fractional integral formulas for the Mittag-Leffler type function with four parameters, Open Math., 13 (2015), 537--546
-
[2]
S. Ahmed, On the generalized fractional integrals of the generalized Mittag-Leffler function, SpringerPlus, 3 (2014), 5 pages
-
[3]
S. Araci, G. Rahman, A. Ghaffar, Azeema, K. S. Nisar, Fractional calculus of extended Mittag-Leffler function and its applications to statistical distribution, Mathematics, 7 (2019), 14 pages
-
[4]
M. Arshad, J. S. Choi, S. Mubeen, K. S. Nisar, G. Rahman, A new extension of the Mittag-Leffler function, Commun. Korean Math. Soc., 33 (2018), 549--560
-
[5]
M. Bohner, G. Rahman, S. Mubeen, K. S. Nisar, A further extension of the extended Riemann-Liouville fractional derivative operator, Turkish J. Math., 42 (2018), 2631--2642
-
[6]
P. Cerone, C. T. Lenard, On integral forms of generalized Mathieu series, J. Inequal. Pure Appl. Math., 4 (2003), 1--11
-
[7]
O. Emersleben, Über die Reihe $\sum^\infty_{k=1} k/{(k^2+c^2)^2}$, Math. Ann., 125 (1952), 165--171
-
[8]
C. Fox, The $G$ and $H$ functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395--429
-
[9]
R. Gorenflo, F. Mainardi, Fractional calculus, integral and differential equations of fractional order, in: Fractals and Fractional Calculus in Continuum Mechanics, 1997 (1997), 223--279
-
[10]
R. Hilfer, Application of fractional Calculus in Physics, World Scientific Publishing Co., River Edge (2000)
-
[11]
C. M. Jiang, F. F. Zhang, T. X. Li, Synchronization and Antisynchronization of N-coupled Fractional-Order Complex Chaotic Systems with Ring Connection, Math. Methods Appl. Sci., 41 (2018), 2625--2638
-
[12]
M. Kamarujjama, O. Khan, Computation of new class of integrals involving generalized Galue type Struve function, J. Comput. Appl. Math., 351 (2019), 228--236
-
[13]
M. Kamarujjama, N. U. Khan, O. Khan, Fractional calculus of generalized $p$-$k$-Mittag-Leffler function using Marichev-Saigo-Maeda operators, Arab J. Math. Sci., 25 (2019), 156--168
-
[14]
M. Kamarujjama, N. U. Khan, O. Khan, The generalized $p$-$k$-Mittag-Leffler function and solution of fractional kinetic equation, J. Anal., 2019 (2019), 18 pages
-
[15]
M. Kamarujjama, N. U. Khan, O. Khan, J. J. Nieto, Extended type $k$-Mittag-Leffler function and its applications, Int. J. Appl. Comput. Math., 4 (2019), 14 pages
-
[16]
O. Khan, N. U. Khan, D. Baleanu, K. S. Nisar, Computable solution of fractional kinetic equations using Mathieu-type series, Adv. Difference Equ., 2019 (2019), 13 pages
-
[17]
A. A. Kilbas, M. Saigo, Fractional calculus of the H-function, Fukuoka Univ. Sci. Rep., 28 (1998), 41--51
-
[18]
A. A. Kilbas, N. Sebastian, Generalized fractional integration of Bessel function of first kind, Integral Transforms Spec. Funct., 19 (2008), 869--883
-
[19]
O. L. Marichev, Voletra equation of Mellin convolution type with a horn function in the kernel, Izvestiya Akademii Nauk BSSR Seriya Fiziko-Matematicheskikh Nauk, 1 (1974), 128--129
-
[20]
E. L. Mathieu, Traité de physique mathématique, Gauthier-Villars, Paris (1980)
-
[21]
V. N. Mishra, D. L. Suthar, S. D. Purohit, Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function, Cogent Math., 4 (2017), 11 pages
-
[22]
G. Mittag-Leffler, Sur la Nouvelle Fonction $E_{\alpha}(x)$, Comptes Rendus de l'Academie des Sciences Paris, 137 (1903), 554--558
-
[23]
K. S. Nisar, D. Baleanu, M. M. Al Qurashi, Fractional calculus and application of generalized Struve function, Springer Plus, 2016 (2016), 13 pages
-
[24]
K. S. Nisar, A. F. Eata, M. Al-Dhaifallah, J. S. Choi, Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution, Adv. Difference Equ., 2016 (2016), 17 pages
-
[25]
K. S. Nisar, D. L. Suthar, M. Bohra, S. D. Purohit, Generalized fractional integral operators pertaining to the by-product of Srivastava's polynomials and generalized Mathieu Series, Mathematics, 7 (2019), 8 pages
-
[26]
T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the Kernel, Yokohama Math. J., 19 (1971), 7--15
-
[27]
H. Y. Qin, Z. Y. Gu, Y. L. Fu, T. X. Li, Existence of Mild Solutions and Controllability of Fractional Impulsive Integrodifferential Systems with Nonlocal Conditions, J. Funct. Spaces, 2017 (2017), 11 pages
-
[28]
G. Rahman, S. Mubeen, K. S. Nisar, J. S. Choi, Certain extended special functions and fractional integral and derivative operators via an extended beta function, Nonlinear Functional Analysis and Applications, 24 (2019), 13 pages
-
[29]
G. Rahman, K. S. Nisar, J. S. Choi, S. Mubeen, M. Arshad, Pathway Fractional Integral Formulas Involving Extended Mittag-Leffler Functions in the Kernel, Kyungpook Math. J., 59 (2019), 125--134
-
[30]
M. Saigo, A remark on integral operators involving the gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11 (1977/78), 135--143
-
[31]
M. Saigo, N. Maeda, More generalization of fractional calculus, Transform methods and special functions, in: Transform Methods and Special Functions, 1996 (1996), 386--400
-
[32]
R. K. Saxena, M. Saigo, Certain properties of fractional calculus operators associated with generalized Mittag-Leffler function, Fract. Calc. Appl. Anal., 8 (2005), 141--154
-
[33]
A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its Properties, J. Math. Anal. Appl., 336 (2007), 797--811
-
[34]
G. Singh, P. Agrwal, S. Araci, M. Acikgoz, Certain fractional calculus formulas involving extended generalized Mathieu series, Adv. Difference Equ., 2018 (2018), 30 pages
-
[35]
H. M. Srivastava, A contour integral involving Fox's $H$-function, Indian J. Math., 14 (1972), 1--6
-
[36]
H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Ltd., Chichester (1985)
-
[37]
H. M. Srivastava, R. K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput., 118 (2001), 1--52
-
[38]
H. M. Srivastava, Ž. Tomovski, Some problems and solutions involving Mathieu’ series and its generalizations, JIPAM. J. Inequal. Pure Appl. Math., 5 (2004), 13 pages
-
[39]
Ž. Tomovski, K. Mehrez, Some families of generalized Mathieu-type power series, Math. Inequal. Appl., 20 (2017), 973--986
-
[40]
Ž. Tomovski, T. K. Pogány, Integral expressions for Mathieu-type power series and for the Butzer-Flocke-Hauss function, Fract. Calc. Appl. Anal., 14 (2011), 623--634
-
[41]
Ž. Tomovski, K. Trenčevski, On an open problem of Bai-Ni Guo and Feng Qi, JIPAM. J. Inequal. Pure Appl. Math., 4 (2003), 7 pages
-
[42]
P. G. Wang, C. R. Li, J. Zhang, T. X. Li, Quasilinearization method for first-order impulsive integro-differential equations, Electron. J. Differential Equations, 2019 (2019), 14 pages
-
[43]
A. Wiman, Über den fundamental satz in der theorie der funktionen $E_{\alpha}(x)$, Acta Mathematica, 29 (1995), 191--201
-
[44]
E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., 10 (1935), 257--270