Global dynamics of delayed HIV infection models including impairment of B-cell functions
Volume 20, Issue 2, pp 161--188
http://dx.doi.org/10.22436/jmcs.020.02.08
Publication Date: November 08, 2019
Submission Date: June 18, 2019
Revision Date: August 26, 2019
Accteptance Date: September 16, 2019
-
1841
Downloads
-
3924
Views
Authors
Ahmed Elaiw
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
Safiya Alshehaiween
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
- Department of Mathematics, Faculty of Science, Taibah University, P. O. Box 344, Medina 42353, Saudi Arabia.
Aatef Hobiny
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
Abstract
In this paper, we construct delayed HIV dynamics models with impairment of B-cell functions. Two forms of the incidence rate have been considered,
bilinear and general. Three types of infected cells and five-time delays have been incorporated into the models. The well-posedness of the models is justified. The models admit two equilibria, which are determined by the basic reproduction number \(R_{0}\). The global stability of each equilibrium is proven by utilizing the Lyapunov function and LaSalle's invariance principle.
Numerical simulations illustrate the theoretical results.
Share and Cite
ISRP Style
Ahmed Elaiw, Safiya Alshehaiween, Aatef Hobiny, Global dynamics of delayed HIV infection models including impairment of B-cell functions, Journal of Mathematics and Computer Science, 20 (2020), no. 2, 161--188
AMA Style
Elaiw Ahmed, Alshehaiween Safiya, Hobiny Aatef, Global dynamics of delayed HIV infection models including impairment of B-cell functions. J Math Comput SCI-JM. (2020); 20(2):161--188
Chicago/Turabian Style
Elaiw, Ahmed, Alshehaiween, Safiya, Hobiny, Aatef. "Global dynamics of delayed HIV infection models including impairment of B-cell functions." Journal of Mathematics and Computer Science, 20, no. 2 (2020): 161--188
Keywords
- HIV dynamics
- global stability
- Lyapunov function
- B-cell impairment
- latent reservoirs
- time delay
MSC
References
-
[1]
S. Amu, N. Ruffin, B. Rethi, F. Chiodi, Impairment of B-cell functions during HIV-1 infection, AIDS, 27 (2013), 2323--2334
-
[2]
N. Bellomo, Y. Tao, Stabilization in a chemotaxis model for virus infection, Discrete. Cont. Dyn Syst.-S, 13 (2020), 105--117
-
[3]
J. N. Blankson, D. Persaud, R. F. Siliciano, The challenge of viral reservoirs in HIV-1 infection, Ann. Rev. Med., 53 (2002), 557--593
-
[4]
F. Chiodi, G. Scarlatti, HIV-Induced damage of B cells and production of HIV neutralizing antibodies, Front. Immunol., 9 (2018), 4 pages
-
[5]
R. V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4$^{+}$\emph{T-cells}, Math. Biosci., 165 (2000), 27--39
-
[6]
R. V. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46 (2003), 425--444
-
[7]
A. De Milito, B lymphocyte dysfunctions in HIV Infection, Curr. HIV. Res., 2 (2004), 11--21
-
[8]
A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. Real World Appl., 11 (2010), 2253--2263
-
[9]
A. M. Elaiw, Global dynamics of an HIV infection model with two classes of target cells and distributed delays, Discrete Dyn. Nat. Soc., 2012 (2012), 13 pages
-
[10]
A. M. Elaiw, Global properties of a class of virus infection models with multitarget cells, Nonlinear Dynam., 69 (2012), 423--435
-
[11]
A. M. Elaiw, R. M. Abukwaik, E. O. Alzahrani, Global properties of a cell mediated immunity in HIV infection model with two classes of target cells and distributed delays, Int. J. Biomath., 7 (2014), 25 pages
-
[12]
A. M. Elaiw, A. A. Almatrafi, A. D. Hobiny, K. Hattaf, Global properties of a general latent pathogen dynamics model with delayed pathogenic and cellular infections, Discrete Dyn. Nat. Soc., 2019 (2019), 18 pages
-
[13]
A. M. Elaiw, N. A. Almuallem, Global properties of delayed-HIV dynamics models with differential drug efficacy in cocirculating target cells, Appl. Math. Comput., 265 (2015), 1067--1089
-
[14]
A. M. Elaiw, N. A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, Math. Methods Appl. Sci., 39 (2016), 4--31
-
[15]
A. M. Elaiw, M. A. Alshaikh, Stability analysis of a general discrete-time pathogen infection model with humoral immunity, J. Differ. Equ. Appl., 2019 (2019), 24 pages
-
[16]
A. M. Elaiw, M. A. Alshaikh, Stability of discrete-time HIV dynamics models with three categories of infected CD4$^{+}$ T-cells, Adv. Difference Equ., 2019 (2019), 24 pages
-
[17]
A. M. Elaiw, N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, Int. J. Biomath., 8 (2015), 53 pages
-
[18]
A. M. Elaiw, N. H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal. Real World Appl., 26 (2015), 161--190
-
[19]
A. M. Elaiw, N. H. AlShamrani, Stability of a general delay-distributed virus dynamics model with multi-staged infected progression and immune response, Math. Methods Appl. Sci., 40 (2017), 699--719
-
[20]
A. M. Elaiw, N. H. AlShamrani, Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays, Math. Methods Appl. Sci., 36 (2018), 125--142
-
[21]
A. M. Elaiw, N. H. AlShamrani, Stability of a general adaptive immunity virus dynamics model with multi-stages of infected cells and two routes of infection, Math. Methods Appl. Sci., 2019 (2019), 15 pages
-
[22]
A. M. Elaiw, S. F. Alshehaiween, A. D. Hobiny, Global properties of delay-distributed HIV dynamics model including impairment of B-cell functions, Mathematics, 7 (2019), 27 pages
-
[23]
A. M. Elaiw, S. A. Azoz, Global properties of a class of HIV infection models with Beddington-DeAngelis functional response, Math. Methods Appl. Sci., 36 (2013), 383--394
-
[24]
A. M. Elaiw, E. K. Elnahary, Analysis of general humoral immunity HIV dynamics model with HAART and distributed delays, Mathematics, 7 (2019), 35 pages
-
[25]
A. M. Elaiw, E. K. Elnahary, A. A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV, Adv. Difference Equ., 2018 (2018), 36 pages
-
[26]
A. M. Elaiw, I. A. Hassanien, S. A. Azoz, Global stability of HIV infection models with intracellular delays, J. Korean Math. Soc., 49 (2012), 779--794
-
[27]
A. M. Elaiw, A. G. Hobiny, A. D. Al Agha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Appl. Math. Comput., 367 (2019), 124758
-
[28]
A. M. Elaiw, A. A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays, Math. Methods Appl. Sci., 40 (2017), 5863--5880
-
[29]
A. M. Elaiw, A. A. Raezah, S. A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Adv. Difference Equ., 2018 (2018), 25 pages
-
[30]
L. Gibelli, A. Elaiw, M. A. Alghamdi, A. M. Althiabi, Heterogeneous population dynamics of active particles: Progression, mutations, and selection dynamics, Math. Models Methods Appl. Sci., 27 (2017), 617--640
-
[31]
J. K. Hale, S. M. Verduyn Lunel, Introduction to functional differential equations, Springer-Verlag, New York (1993)
-
[32]
A. D. Hobiny, A. M. Elaiw, A. A. Almatrafi, Stability of delayed pathogen dynamics models with latency and two routes of infection, Adv. Difference Equ., 2018 (2018), 26 pages
-
[33]
G. Huang, Y. Takeuchi, W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693--2708
-
[34]
Y. Kuang, Delay Differential Equations with applications in population dynamics, Academic Press, San Diego (1993)
-
[35]
B. Li, Y. M. Chen, X. J. Lu, S. Q. Liu, A delayed HIV-1 model with virus waning term, Math. Biosci. Eng., 13 (2016), 135--157
-
[36]
D. Li, W. Ma, Asymptotic properties of a HIV-1 infection model with time delay, J. Math. Anal. Appl., 335 (2007), 683--691
-
[37]
J. Z. Lin, R. Xu, X. H. Tian, Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity, Appl. Math. Comput., 315 (2017), 516--530
-
[38]
H. J. Liu, J.-F. Zhang, Dynamics of two time delays differential equation model to HIV latent infection, Phys. A,, 514 (2019), 384--395
-
[39]
Y. Lv, Z. X. Hu, F. C. Liao, The stability and Hopf bifurcation for an HIV model with saturated infection rate and double delays, Int. J. Biomath., 11 (2018), 43 pages
-
[40]
P. Lydyard, A. Whelan, M. Fanger, BIOS Instant notes in immunology, Taylor & Francis, London (2005)
-
[41]
H. Miao, X. Abdurahman, Z. D. Teng, L. Zhang, Dynamical analysis of a delayed reaction-diffusion virus infection model with logistic growth and humoral immune impairment, Chaos Solitons Fractals, 110 (2018), 280--291
-
[42]
H. Miao, Z. D. Teng, C. J. Kang, A. Muhammadhaji, Stability analysis of a virus infection model with humoral immunity response and two time delays, Math. Methods Appl. Sci., 39 (2016), 3434--3449
-
[43]
A. Murase, T. Sasaki, T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247--267
-
[44]
P. W. Nelson, J. D. Murray, A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201--215
-
[45]
M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74--79
-
[46]
M. A. Nowak, R. M. May, Virus dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford (2000)
-
[47]
A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM. Rev., 41 (1999), 3--44
-
[48]
S. K. Sahani, Yashi, Effects of eclipse phase and delay on the dynamics of HIV infection, J. Biol. Systems, 26 (2018), 421--454
-
[49]
H. Y. Shu, L. Wang, J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 1280--1302
-
[50]
T. L. Wang, Z. X. Hu, F. C. Liao, Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response, J. Math. Anal. Appl., 411 (2014), 63--74
-
[51]
T. L. Wang, Z. X. Hu, F. C. Liao, W. B. Ma, Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Math. Comput. Simulation, 89 (2013), 13--22
-
[52]
L. C. Wang, M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4$^{+}$\emph{ T cells}, Math. Biosci., 200 (2006), 44--57
-
[53]
S. F. Wang, D. Y. Zou, Global stability of in-host viral models with humoral immunity and intracellular delays, Appl. Math. Model., 36 (2012), 1313--1322
-
[54]
Y. Zhao, D. T. Dimitrov, H. Liu, Y. Kuang, Mathematical insights in evaluating state dependent effectiveness of HIV prevention interventions, Bull. Math. Biol., 75 (2013), 649--675