Dynamic behaviors of a two-species competitive system with nonlinear inter-inhibition terms and infinite delay
Volume 21, Issue 1, pp 45--56
http://dx.doi.org/10.22436/jmcs.021.01.05
Publication Date: March 21, 2020
Submission Date: January 28, 2020
Revision Date: February 12, 2020
Accteptance Date: February 19, 2020
-
1360
Downloads
-
3168
Views
Authors
Runxin Wu
- Mathematics and Physics Institute, Fujian University of Technology, Fuzhou, Fujian, 350014, P. R. China.
Zhiqing Gao
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China.
Fengde Chen
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China.
Abstract
Sufficient conditions are obtained for the
global attractivity of the positive equilibrium and boundary equilibria of the following two-species competitive system with nonlinear inter-inhibition terms
\[
\frac{dy_1(t)}{dt} = y_1(t)\Bigg[r_1-a_1y_1-\frac{b_1\int_{-\infty}^{t}K_2(t-s)y_2(s)ds}{1+\int_{-\infty}^{t}K_2(t-s)y_2(s)ds}\Bigg],\ \ \
\frac{dy_2(t)}{dt} = y_2(t)\Bigg[r_2-a_2y_2-\frac{b_2\int_{-\infty}^{t}K_1(t-s)y_1(s)ds}{1+\int_{-\infty}^{t}K_1(t-s)y_1(s)ds}\Bigg],
\]
where \(r_i, a_i, b_i, i=1,2\) are all positive constants.
The results not only improve
but also complement the main results of [B. G. Chen, J. Math. Computer Sci., \(\bf 16 \) (2016), 481--494].
Share and Cite
ISRP Style
Runxin Wu, Zhiqing Gao, Fengde Chen, Dynamic behaviors of a two-species competitive system with nonlinear inter-inhibition terms and infinite delay, Journal of Mathematics and Computer Science, 21 (2020), no. 1, 45--56
AMA Style
Wu Runxin, Gao Zhiqing, Chen Fengde, Dynamic behaviors of a two-species competitive system with nonlinear inter-inhibition terms and infinite delay. J Math Comput SCI-JM. (2020); 21(1):45--56
Chicago/Turabian Style
Wu, Runxin, Gao, Zhiqing, Chen, Fengde. "Dynamic behaviors of a two-species competitive system with nonlinear inter-inhibition terms and infinite delay." Journal of Mathematics and Computer Science, 21, no. 1 (2020): 45--56
Keywords
- Competition
- nonlinear inter-inhibition terms
- global attractivity
- infinite delay
MSC
References
-
[1]
F. D. Chen, On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180 (2005), 33--49
-
[2]
B. G. Chen, Global attractivity of a two--species competitive system with nonlinear inter--inhibition terms, J. Math. Computer Sci., 16 (2016), 481--494
-
[3]
F. D. Chen, X. X. Chen, S. Y. Huang, Extinction of a two species non-autonomous competitive system with Beddington-DeAngelis functional response and the effect of toxic substances, Open Math., 14 (2016), 1157--1173
-
[4]
L. J. Chen, J. T. Sun, F. D. Chen, L. Zhao, Extinction in a Lotka-Volterra competitive system with impulse and the effect of toxic substances, Appl. Math. Model., 40 (2016), 2015--2024
-
[5]
F. D. Chen, H. N. Wang, Dynamic behaviors of a Lotka-Volterra competitive system with infinite delay and single feedback control, J. Nonlinear Funct. Anal., 2016 (2016), 11 pages
-
[6]
F. D. Chen, H. N. Wang, Y. H. Lin, W. L. Chen, Global stability of a stage-structured predator-prey system, Appl. Math. Comput., 223 (2013), 45--53
-
[7]
J. H. Chen, X. D. Xie, Stability analysis of a discrete competitive system with nonlinear interinhibition terms, Adv. Difference Equ., 2017 (2017), 19 pages
-
[8]
F. D. Chen, X. D. Xie, Z. S. Miao, L. Q. Pu, Extinction in two species nonautonomous nonlinear competitive system, Appl. Math. Comput., 274 (2016), 119--124
-
[9]
F. D. Chen, X. D. Xie, H. N. Wang, Global stability in a competition model of plankton allelopathy with infinite delay, J. Syst. Sci. Complex., 28 (2015), 1070--1079
-
[10]
F. M. de Oca, M. Vivas, Extinction in a two dimensional Lotka-Volterra system with infinite delay, Nonlinear Anal. Real World Appl., 7 (2006), 1042--1047
-
[11]
K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht (1992)
-
[12]
J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York-Heidelberg (1977)
-
[13]
R. Y. Han, X. D. Xie, F. D. Chen, Permanence and global attractivity of a discrete pollination mutualism in plant--pollinator system with feedback controls, Adv. Difference Equ., 2016 (2016), 17 pages
-
[14]
M. X. He, Z. Li, F. D. Chen, Dynamic of a nonautonomous two-species impulsive competitive system with infinite delays, Open Math., 17 (2019), 776--794
-
[15]
X. Y. Huang, F. D. Chen, X. D. Xie, L. Zhao, Extinction of a two species competitive stage-structured system with the effect of toxic substance and harvesting, Open Math., 17 (2019), 856--873
-
[16]
Z. Li, F. D. Chen, M. X. He, Asymptotic behavior of the reaction-diffusion model of plankton allelopathy with nonlocal delays, Nonlinear Anal. Real World Appl., 12 (2011), 1748--1758
-
[17]
Z. Li, F. D. Chen, M. X. He, Global stability of a delay differential equations model of plankton allelopathy, Appl. Math. Comput., 218 (2012), 7155--7163
-
[18]
T. X. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages
-
[19]
Y. H. Lin, X. D. Xie, F. D. Chen, T. T. Li, Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes, Adv. Difference Equ., 2016 (2016), 19 pages
-
[20]
Z. E. Ma, Mathematical Modeling and Study of Population Ecology (in Chinese), Hefei Anhui Education Publishing House, China (1996)
-
[21]
L. Q. Pu, X. D. Xie, F. D. Chen, Z. S. Miao, Extinction in two--species nonlinear discrete competitive system, Discrete Dyn. Nat. Soc., 2016 (2016), 10 pages
-
[22]
W. J. Qin, Z. J. Liu, Y. P. Chen, Permanence and global stability of positive periodic solutions of a discrete competitive system, l stability of positive periodic solutions of a discrete competitive system}, Discrete Dyn. Nat. Soc., 2009 (2009), 13 pages
-
[23]
P. G. Wang, C. R. Li, J. Zhang, T. X. Li, Quasilinearization method for first-order impulsive integro-differential equations, Electron. J. Differential Equations, 2019 (2019), 14 pages
-
[24]
Q. L. Wang, Z. J. Liu, Z. X. Li, R. A. Cheke, Existence and global asymptotic stability of positive almost periodic solutions of a two-species competitive system, Int. J. Biomath., 7 (2014), 18 pages
-
[25]
R. X. Wu, L. Li, Q. F. Lin, A Holling type commensal symbiosis model involving Allee effect, Comm. Math. Biol. Neur., 2018 (2018), 13 pages
-
[26]
X. D. Xie, F. D. Chen, Y. L. Xue, Note on the stability property of a cooperative system incorporating harvesting, Discrete Dyn. Nat. Soc., 2014 (2014), 5 pages
-
[27]
X. D. Xie, F. D. Chen, K. Yang, Y. L. Xue, Global attractivity of an integro--differential model of mutualism, Abstract Appl. Anal., 2014 (2014), 6 pages
-
[28]
Y. L. Xue, X. D. Xie, Q. F. Lin Q, F. D. Chen, Global attractivity and extinction of a discrete competitive system with infinite delays and single feedback control, Discrete Dyn. Nat. Soc., 2018 (2018), 14 pages
-
[29]
K. Yang, Z. S. Miao, F. D. Chen, X. D. Xie, Influence of single feedback control variable on an autonomous Holling II type cooperative system, J. Math. Anal. Appl., 435 (2016), 874--888
-
[30]
K. Yang, X. D. Xie, F. D. Chen, Global stability of a discrete mutualism model, Abstr. Appl. Anal., 2014 (2014), 7 pages
-
[31]
S. B. Yu, Permanence for a discrete competitive system with feedback controls, Commun. Math. Biol. Neurosci., 2015 (2015), 11 pages
-
[32]
S. B. Yu, F. D. Chen, Dynamic behaviors of a competitive system with Beddington-DeAngelis functional response, Discrete Dyn. Nat. Soc., 2019 (2019), 12 pages
-
[33]
Q. Yue, Dynamics of a modified Leslie--Gower predator-prey model with Holling-type II schemes and a prey refuge, SpringerPlus, 5 (2016), 12 pages
-
[34]
Q. Yue, Stability property of the prey free equilibrium point, Open Math., 17 (2019), 646--652