A tumor growth model with chemotherapy and diffusion effect
Volume 21, Issue 1, pp 57--68
http://dx.doi.org/10.22436/jmcs.021.01.06
Publication Date: March 22, 2020
Submission Date: November 24, 2019
Revision Date: February 06, 2020
Accteptance Date: February 12, 2020
-
1507
Downloads
-
3266
Views
Authors
I. J. T. R. Tamsih
- Department of Mathematics, Faculty of Natural Science, University of Brawijaya, Indonesia.
T. Trisilowati
- Department of Mathematics, Faculty of Natural Science, University of Brawijaya, Indonesia.
U. Habibah
- Department of Mathematics, Faculty of Natural Science, University of Brawijaya, Indonesia.
Abstract
Chemotherapy is the most common treatment for cancer by using certain drugs or hormones. One of the mechanisms to transport the drugs within the human body is called diffusion-passive transport where the substances move from an area of high concentration to an area of low concentration. By adding chemotherapy and the diffusion effect, a model of tumor growth and its interaction with some types of immune cell such as macrophages, CD8+T and IFN-\(\gamma\) is studied. Regarding to the analysis result, the existence of tumor equilibrium point is determined by Cardan's condition. It is locally asymptotically stable if it satisfies the Routh-Hurwitz criterion. Furthermore, the simulation shows that we can eliminate more tumor cell by extending the duration of chemotherapy injection and shortening the interval of chemotherapy. However, these methods are not effective in the long term. It is also observed that the value of the diffusion coefficient affects the growth of the tumor and other cells.
Share and Cite
ISRP Style
I. J. T. R. Tamsih, T. Trisilowati, U. Habibah, A tumor growth model with chemotherapy and diffusion effect, Journal of Mathematics and Computer Science, 21 (2020), no. 1, 57--68
AMA Style
Tamsih I. J. T. R., Trisilowati T., Habibah U., A tumor growth model with chemotherapy and diffusion effect. J Math Comput SCI-JM. (2020); 21(1):57--68
Chicago/Turabian Style
Tamsih, I. J. T. R., Trisilowati, T., Habibah, U.. "A tumor growth model with chemotherapy and diffusion effect." Journal of Mathematics and Computer Science, 21, no. 1 (2020): 57--68
Keywords
- Tumor
- immune cell
- diffusion
- chemotherapy
- dynamical analysis
MSC
References
-
[1]
F. Ansarizadeh, M. Singh, D. Richards, Modelling of tumor cells regression in response to chemotherapeutic treatment, Appl. Math. Model., 48 (2017), 96--112
-
[2]
M. F. Aziz, S. A. B. Andrijono, A. B. Saifuddin, Buku acuan nasional onkologi ginekologi, PT. Bina Pustaka Sarwono Prawirohardja, Jakarta (2010)
-
[3]
J. Baloni, U. S. Rana, Mathematical modelling of strategic treatments on tumor growth, App. Comp. Math., 2 (2013), 1--5
-
[4]
S. Banerjee, S. Khajanchi, S. Chaudhuri, A mathematical model to elucidate brain tumor abrigation by immunotherapy with T11 target structure, PloS One, 10 (2015), 21 pages
-
[5]
L. G. Depilis, A. Radunskaya, The dynamics of an optimally controlled tumor model: a case study, Math. Comput. Model., 37 (2003), 1221--1244
-
[6]
V. T. Devita Jr., S. Hellman, S. A. Roseberg, Cancer principles & practice of oncology, Lippincott-Raven Publ., Philadelphia (1997)
-
[7]
S. Khajanchi, S. Banerjee, Quantifying the role of immunotherapeutic drug T11 target structure in progression of malignant gliomas: Mathematical modelling and dynamical perspective, Math. Biosci., 289 (2017), 69--77
-
[8]
C. Kosmidis, K. Sapalidis, T. Koletsa, M. Kosmidou, C. Efthimiadis, G. Anthimidis, N. Varsamis, N. Michalopoulos, C. Koulouris, S. Atmatzidis, L. Liavas, T.-M. Strati, G. Koimtzis, A. Tsakalidis, S. Mantalovas, K. Zarampouka, M. Florou, D. E. Giannakidis, E. Georgakoudi, S. Baka, P. Zarogoulidis, Y.-G. Man, I. Kesisoglou, Interferon-$\gamma$ and colorectal cancer: an up-to date, J. Cancer, 9 (2018), 232--238
-
[9]
N. Kronik, Y. Kogan, V. Vainstein, Z. Agur, Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics, Cancer Immunol. Immunother., 57 (2017), 425--439
-
[10]
A. Mandal, Macrophage function, www.News-Medical.net, 2014 (2014), 11 pages
-
[11]
M. R. Owen, J. Stamper, M. Muthana, G. W. Richardson, J. Dobson, C. E. Lewis, H. M. Byrne, Mathematical modelling predicts synergistic anti-tumor effects of combining a macrophage-based, hypoxia-targeted, gene therapy with chemotherapy, Cancer Res., 71 (2011), 2826--2837
-
[12]
A. F. Rihan, M. Safan, M. A. Abdeen, D. Abdel Rahman, Qualitative and computational analysis of a mathematical model for tumor-immune interactions, J. Appl. Math., 2012 (2012), 19 pages
-
[13]
I. J. T. R. Tamsih, Trisilowati, U. Habibah, Dynamical analysis of a tumor growth model involving interferon gamma, AIP Conference Proc., 2019 (2019), 13 pages
-
[14]
T. H. Tjay, K. Rahardja, Obat-obat penting: khasiat, penggunaan dan efek-efek sampingnya, Elex Media Komputiondo, Jakarta (2010)
-
[15]
M. R. Zaidi, G. Merlino, The two faces of interferon-$\gamma$ in cancer, Clin. Cancer Res., 17 (2011), 6118--6124
-
[16]
D. V. Zenkov, A. M. Blonch, J. E. Marsden, he lyapunov-malkin theorem and stabilization of the unicycle with rider, Systems Control Lett., 45 (2001), 293--302