A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation
-
1550
Downloads
-
3613
Views
Authors
Tayyaba Akram
- School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
Muhammad Abbas
- Department of Mathematics, University of Sargodha, 40100 Sargodha, Pakistan.
Ajmal Ali
- School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
Abstract
A new extended cubic B-spline approximation for the numerical solution of the time-fractional fisher equation is formed and examined. The given non-linear partial differential equation through substitution is converted into a linear partial differential equation through substitution, using Taylor's series expansion. The time-fractional derivative is approximated in Caputo's sense while the space dimension is calculated using a new extended cubic B-spline. The proposed numerical technique is shown to be unconditionally stable and convergent. The errors are used for measuring the accuracy of the proposed technique. The graphical and numerical results are presented to illustrate the performance of the technique.
Share and Cite
ISRP Style
Tayyaba Akram, Muhammad Abbas, Ajmal Ali, A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation, Journal of Mathematics and Computer Science, 22 (2021), no. 1, 85--96
AMA Style
Akram Tayyaba, Abbas Muhammad, Ali Ajmal, A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation. J Math Comput SCI-JM. (2021); 22(1):85--96
Chicago/Turabian Style
Akram, Tayyaba, Abbas, Muhammad, Ali, Ajmal. "A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation." Journal of Mathematics and Computer Science, 22, no. 1 (2021): 85--96
Keywords
- Time fractional Fisher equation
- extended cubic B-spline
- Caputo's derivative
- stability
- convergence
MSC
References
-
[1]
H. F. Ahmed, Efficient methods for the analytical solution of the fractional generalized fisher equation, J. Fract. Calc. Appl., 10 (2019), 85--104
-
[2]
A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Soliton Fractal, 114 (2018), 478--482
-
[3]
A. Akgül, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid, J. Taibah Uni. Sci., 13 (2019), 857--863
-
[4]
A. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 6 pages
-
[5]
A. Akgül, A. Cordero, J. R. Torregrosa, Solutions of fractional gas dynamics equation by a new technique, Math. Meth. Appl. Sci., 43 (2020), 1349--1358
-
[6]
A. Akgül, M. Modanli, Crank-Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana-Baleanu Caputo derivative, Chaos Soliton Fractal, 127 (2019), 10--16
-
[7]
T. Akram, M. Abbas, A. I. Ismail, An extended cubic $B$-spline collocation scheme for time fractional sub-diffusion equation, AIP Conference Proceedings, 2184 (2019), 15 pages
-
[8]
T. Akram, M. Abbas, A. I. Ismail, Numerical solution of fractional cable equation via extended cubic $B$-spline, AIP Conference Proceedings, 2138 (2019), 7 pages
-
[9]
T. Akram, M. Abbas, A. I. Ismail, N. H. M. Ali, D. Baleanu, Extended cubic B-splines in the numerical solution of time fractional telegraph equation, Adv. Difference Equ., 2019 (2019), 20 pages
-
[10]
T. Akram, M. Abbas, M. B. Riaz, A. I. Ismail, N. M. Ali, An efficient numerical technique for solving time fractional Burgers equation, Alexand. Eng. J., 2020 (2020), 20 pages
-
[11]
T. Akram, M. Abbas, M. B. Riaz, A. I. Ismail, N. M. Ali, Development and analysis of new approximation of extended cubic $B$-spline to the non-linear time fractional Klein-Gordon equation, Fractals, 2020 (2020), 28 pages
-
[12]
M. M. Al Qurashi, Z. Korpinar, D. Baleanu, M. Inc, A new iterative algorithm on the time fractional Fisher equation: Residual power series method, Adv. Mech. Eng., 9 (2017), 1--8
-
[13]
S. Arshed, Quintic $B$-spline method for time fractional superdiffusion fourth-order differential equation, Math. Sci., 11 (2017), 17--26
-
[14]
R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calulus to visoelasticity, J. Rheology, 27 (1983), 201--210
-
[15]
D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, World Scientific Publishing Co. Pte. Ltd., Hackensack (2012)
-
[16]
D. Baleanu, A. Fernandez, A. Akgül, {On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 13 pages
-
[17]
M. Caputo, Elasticita e dissipazione, Zanichelli, Bologna (1969)
-
[18]
A. Demir, M. A. Bayrak, E. Ozbilge, An approximate solution of the time fractional fisher equation with small delay by residual power series method, Math. Probl. Eng., 2018 (2018), 8 pages
-
[19]
A. Esen, O. Tasbozan, Numerical solutions of time fractional Burgers equation, Acta Univ. Sapientiae Math., 7 (2015), 167--185
-
[20]
R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355--369
-
[21]
M. M. Khader, K. M. Saad, A numerical study by using the Chebyshev collocation method for a problem of biological invasion: Fractional Fisher equation, Int. J. Biomath, 11 (2018), 15 pages
-
[22]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam (2006)
-
[23]
R. L. Magin, Fractional calculus in bioengineering, Critical Rev. Biomed. Engineer., 32 (2004), 1--377
-
[24]
R. E. Mickens, Relation between the time and space step-sizes in nonstandard finite difference schemes for the Fishers equation, Numer. Methods Partial Differential Equations, 13 (1997), 51--55
-
[25]
S. T. Mohyud-Din, T. Akram, M. Abbas, A. I. Ismail, N. H. M. Ali, A fully implicit finite difference scheme based on extended cubic B-splines for time fractional advection-diffusion equation, Adv. Difference Equ., 2018 (2018), 17 pages
-
[26]
Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives, Appl. Math. Comput., 178 (2006), 527--533
-
[27]
D. Olmos, B. D. Shizgal, A pseudo-spectral method of solution of Fisher's equation, J. Comput. Appl. Math., 193 (2006), 219--242
-
[28]
D. A. Robinson, The use of control systems analysis in the neurophysiology of eye movements, Annual Rev. Neurosci., 4 (1981), 463--501
-
[29]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993)
-
[30]
O. Tasbozan, A. Esen, Quadratic $B$-spline Galerkin method for numerical solutions of fractional telegraph equations, Bulletin Math. Sci. Appl., 18 (2017), 23--39
-
[31]
R. Uddin, Comparison of the nodal integral method and non standard finite-difference schemes for the Fisher equation, SIAM J. Sci. Comput., 22 (2001), 1926--1942
-
[32]
P. Veeresha, D. G. Prakasha, H. M. Baskonus, Novel simulations to the time‑fractional Fisher's equation, Math. Sci., 13 (2019), 33--42
-
[33]
X. Zhang, J. Liu, An analytic study on time fractional Fisher equation using homotopy perturbation method, Walailak J. Sci. Tech., 11 (2014), 975--985