A note on modified Hermite matrix polynomials
-
1333
Downloads
-
3046
Views
Authors
Virender Singh
- Department of Applied Mathematics, Galgotias college of Engineering and Technology, Greater Noida, Uttar Pradesh-201306, India.
Mumtaz Ahmad Khan
- Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202002, India.
Abdul Hakim Khan
- Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202002, India.
Kottakkaran Sooppy Nisar
- Department of Mathematics, College of Arts and Sciences, Wadi Aldawaser, Prince Sattam bin Abdulaziz University, 11991, Saudi Arabia.
Abstract
The main aim of this paper is to investigate the modified Hermite matrix polynomials \({_M}\mathscr{H}{_n}{(\zeta_1,\lambda;\mathscr{A})}\) by finding some important results such as generating functions, recurrence relations, Rodrigues formula, orthogonality conditions, expansion formula, integrals, fractional integrals, fractional derivatives and some other properties.
Share and Cite
ISRP Style
Virender Singh, Mumtaz Ahmad Khan, Abdul Hakim Khan, Kottakkaran Sooppy Nisar, A note on modified Hermite matrix polynomials, Journal of Mathematics and Computer Science, 22 (2021), no. 4, 333--346
AMA Style
Singh Virender, Khan Mumtaz Ahmad, Khan Abdul Hakim, Nisar Kottakkaran Sooppy, A note on modified Hermite matrix polynomials. J Math Comput SCI-JM. (2021); 22(4):333--346
Chicago/Turabian Style
Singh, Virender, Khan, Mumtaz Ahmad, Khan, Abdul Hakim, Nisar, Kottakkaran Sooppy. "A note on modified Hermite matrix polynomials." Journal of Mathematics and Computer Science, 22, no. 4 (2021): 333--346
Keywords
- Gamma matrix function
- hypergeometric matrix function
- three term matrix recurrence relation
- modified Hermite matrix differential equation
- modified Hermite matrix polynomials
- orthogonal matrix polynomials
MSC
References
-
[1]
R. S. Batahan, A new extension of Hermite matrix polynomials and its applications, Linear Algebra Appl., 419 (2006), 82--92
-
[2]
R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Co., New York-Düsseldorf-London (1970)
-
[3]
F. Brafman, Some generating functions for Laguerre and Hermite polynomials, Canadian J. Math., 9 (1957), 180--187
-
[4]
E. Defez, L. Jódar, Some applications of the Hermite matrix polynomials series expansions, J. Comput. Appl. Math., 99 (1998), 105--117
-
[5]
N. Dunford, J. T. Schwartz, Linear Operators, part I: General Theory, Interscience Publishers, New York (1958)
-
[6]
A. J. Durán, W. Van Assche, Orthogonal Matrix Polynomials and Higher Order Recurrence Relations, Linear Algebra Appl., 219 (1995), 261--280
-
[7]
L. Jódar, R. Company, Hermite Matrix Polynomials and Second Order Matrix Differential Equations, J. Approx. Theory Appl. (N.S.), 12 (1996), 20--30
-
[8]
L. Jódar, R. Company, E. Navarro, Laguerre Matrix Polynomials and Systems of Second Order Differential Equations, Appl. Numer. Maths., 15 (1994), 53--63
-
[9]
L. Jódar, J. C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Math., 99 (1998), 205--217
-
[10]
L. Jódar, J. C. Cortés, Closed form general solution of the hypergeometric matrix differential equation, Math. Comput. Modelling, 32 (2000), 1017--1028
-
[11]
L. Jódar, E. Defez, Some new matrix formulas related to Hermite matrix polynomials theory, International Workshop on Orthogonal Polynomials in Mathematical Physics (Univ. Carlos III Madrid, Leganés), 1996 (1996), 93--101
-
[12]
L. Jódar, E. Defez, A connection between Laguerre's and Hermite's matrix polynomials, Appl. Math. Lett., 11 (1998), 13--17
-
[13]
L. Jódar, E. Defez, On Hermite matrix polynomials and Hermite matrix function, J. Approx. Theory Appl. (N.S.), 14 (1998), 36--48
-
[14]
L. Jódar, E. Defez, E. Ponsoda, Matrix Quadrature Integration and Orthogonal Matrix Polynomials, Congr. Numer., 106 (1995), 141--153
-
[15]
W. A. Khan, Certain results for the Hermite and Chebyshev polynomials of $2$-variables, Ann. Commun. Math., 2 (2019), 84--90
-
[16]
W. A. Khan, I. A. Khan, M. Ali, Degenerate Hermite poly-Bernoulli numbers and polynomials with q-parameter, Stud. Univ. Babes-Bolyai Math., 65 (2020), 3--15
-
[17]
M. A. Khan, A. H. Khan, V. Singh, Study of Gegenbauer matrix Polynomials via matrix functions and their properties, Asian J. Math. Comput. Res., 16 (2017), 197--207
-
[18]
W. A. Khan, M. A. Pathan, On generalized Lagrange--Hermite--Bernoulli and related polynomials, Acta et Commentationes Universitatis Tartuensis de Mathematica, 23 (2019), 211--224
-
[19]
N. U. Khan, T. Usman, Certain generating functions of Hermite-Bernoulli-Legendre polynomials, Ufa Math. J., 10 (2018), 118--126
-
[20]
N. U. Khan, T. Usman, W. A. Khan, A new class of Laguerre-based generalized Hermite-Euler polynomials and its properties, Kragujevac J. Math., 44 (2020), 89--100
-
[21]
N. N. Lebedev, Special Functions and Their Applications, Dover Publications, New York (1972)
-
[22]
M. S. Metwally, M. T. Mohamed, A. Shehata, On Hermite-Hermite matrix polynomials, Math. Bohem., 133 (2008), 421--434
-
[23]
I. Najfeld, T. F. Havel, Derivaties of the Matrix Exponential and their Computation, Adv. Appl. Math., 16 (1995), 321--375
-
[24]
K. S. Nisar, W. A. Khan, Notes on $q$-Hermite based unified Apostol type polynomials, J. Interdiscip. Math., 22 (2019), 1185--1203
-
[25]
E. D. Rainville, Special functions, Macmillan Co., New York (1960)
-
[26]
K. A. M. Sayyed, M. S. Metwally, R. S. Batahan, On generalized Hermite matrix polynomial, Electron. J. Linear Algebra, 10 (2003), 272--279
-
[27]
K. A. M. Sayyed, M. S. Metwally, R. S. Batahan, Gegenbauer matrix polynomials and second order matrix differential equations, Divulg. Mat., 12 (2004), 101--115
-
[28]
A. Shehata, A new extension of Hermite-Hermite matrix polynomials and their properties, Thai J. Math., 10 (2012), 433--444
-
[29]
A. Shehata, R. Bhukya, Some properties of Hermite matrix polynomials, J. Int. Math. Virtual Inst., 5 (2015), 1--17
-
[30]
V. Singh, M. A. Khan, A. H. Khan, On a Multivariable Extension of Laguerre Matrix Ploynomials, Electron. J. Math. Anal. Appl., 6 (2018), 223--240
-
[31]
H. M. Srivastava, W. A. Khan, H. Haroon, Some expansions for a class of generalized Humbert Matrix polynomials, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 3619--3634
-
[32]
H. M. Srivastava, H. L. Manocha, A treatise on generating functions, John Wiley & Sons, New York (1984)
-
[33]
L. M. Upadhyaya, A. Shehata, On Legendre matrix polynomials and its applications, Int. Trans. Math. Sci. Comput., 4 (2011), 291--310