On bivariate Apostol-Fubini polynomials of higher order
-
1341
Downloads
-
2603
Views
Authors
Nestor G. Acala
- Mathematics Department, Main Campus, Mindanao State University, Marawi City, Lanao Del Sur 9700, Philippines.
Abstract
Recently, some generalizations of the Apostol-Bernoulli polynomials, Apostol-Euler polynomials, and Apostol-Genocchi polynomials were introduced (see for instance [V. Kurt, Appl. Math. Sci., \(\bf 3\) (2009), 2757--2764], [Q.-M. Luo, Taiwanese J. Math., \(\bf 10\) (2006), 917--925], [Q.-M. Luo, H. M. Srivastava, J. Math. Anal. Appl., \(\bf 308\) (2005), 290--302], [D. Q. Lu, H. M. Srivastava, Comput. Math. Appl., \(\bf 62\) (2011), 3591--3602] and [W. Wang, C. Jia, T. Wang, Comput. Math. Appl., \(\bf 55\) (2008), 1322--1332]). In this paper, we introduce and investigate an analogous generalization of Fubini polynomials of higher order, which we call bivariate Apostol-Fubini polynomials of higher order. We then obtain an explicit formula of these generalized Fubini polynomials and establish several symmetry identities. Moreover, we also establish relations of these polynomials with other Apostol-type numbers and polynomials.
Share and Cite
ISRP Style
Nestor G. Acala, On bivariate Apostol-Fubini polynomials of higher order, Journal of Mathematics and Computer Science, 23 (2021), no. 1, 10--25
AMA Style
Acala Nestor G., On bivariate Apostol-Fubini polynomials of higher order. J Math Comput SCI-JM. (2021); 23(1):10--25
Chicago/Turabian Style
Acala, Nestor G.. "On bivariate Apostol-Fubini polynomials of higher order." Journal of Mathematics and Computer Science, 23, no. 1 (2021): 10--25
Keywords
- Fubini numbers
- Fubini polynomials
- generalized Fubini polynomials of higher order
- Apostol-Bernoulli polynomials
- Apostol-type polynomials
- \(\lambda\)-Stirling numbers of the second kind
- Gauss hypergeometric functions
MSC
- 11B68
- 11B73
- 05A10
- 11B65
- 33C05
- 11B83
References
-
[1]
N. G. Acala, A unification of the generalized multiparameter Apostol-type Bernoulli, Euler, Fubini, and Genocchi polynomials of higher order, Eur. J. Pure Appl. Math., 13 (2020), 587--607
-
[2]
S. Araci, W. A. Khan, M. Acikgoz, C. Ozel, P. Kumam, A new generalization of Apostol-type Hermite-Genocchi polynomials and its application, SpringerPlus, 5 (2016), 17 pages
-
[3]
R. Dere, Y. Simsek, Hermite base Bernoulli type polynomials on the umbral algebra, Russ. J. Math. Phys., 22 (2015), 1--5
-
[4]
R. Dere, Y. Simsek, H. M. Srivastava, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, 133 (2013), 3245--3263
-
[5]
A. Dil, V. Kurt, Investigating geometric and exponential polynomials with Euler-Seidel matrices, J. Integer Seq., 14 (2011), 12 pages
-
[6]
U. Duran, S. Araci, M. Acikgoz, A note on q-Fubini polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 29 (2019), 211--224
-
[7]
R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley Publ. Co., New York (1994)
-
[8]
G.-W. Jang, T. Kim, Some identities of the ordered Bell numbers arising from differential equations, Adv. Stud. Contemp. Math. (Kyungshang), 27 (2017), 385--397
-
[9]
L. Kargin, Some formulae for products of geometric polynomials with applications, J. Integer Seq., 20 (2017), 15 pages
-
[10]
N. Kilar, Y. Simsek, A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials, J. Korean Math. Soc., 54 (2017), 1605--1621
-
[11]
T. Kim, Degenerate ordered Bell numbers and polynomials, Proc. Jangjeon Math. Soc., 20 (2017), 137--144
-
[12]
D. S. Kim, G.-W. Jang, H.-I. Kwon, T. Kim, Two variable higher-order degenerate Fubini polynomials, Proc. Jangjeon Math. Soc., 21 (2018), 5--22
-
[13]
T. Kim, D. S. Kim, G.-W. Jang, A note on degenerate Fubini polynomials, Proc. Jangjeon Math. Soc., 20 (2017), 521--531
-
[14]
T. Kim, D. S. Kim, G.-W. Jang, D. Kim, Two variable higher-order central Fubini polynomials, J. Inequal. Appl., 2019 (2019), 13 pages
-
[15]
T. Kim, D. S. Kim, G.-W. Jang, J. Kwon, Symmetric identities for Fubini polynomials, Symmetry, 10 (2018), 7 pages
-
[16]
D. S. Kim, T. Kim, H.-I. Kwon, J.-W. Park, Two variable higher-order Fubini polynomials, J. Korean Math. Soc., 55 (2018), 975--986
-
[17]
V. Kurt, A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials, Appl. Math. Sci., 3 (2009), 2757--2764
-
[18]
Q.-M. Luo, On the Apostol-Bernoulli polynomials, Cent. Eur. J. Math., 2 (2004), 509--515
-
[19]
Q.-M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math., 10 (2006), 917--925
-
[20]
Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290--302
-
[21]
Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput., 217 (2011), 5702--5728
-
[22]
D. Q. Lu, H. M. Srivastava, Some series identities involving the generalized Apostol type and related polynomials, Comput. Math. Appl., 62 (2011), 3591--3602
-
[23]
H. M. Srivastava, Some generalizations and basic (or q-)extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci., 5 (2011), 390--444
-
[24]
H. M. Srivastava, P. G. Todorov, An explicit formula of the generalized Bernoulli polynomials, J. Math. Anal. Appl., 130 (1988), 509--513
-
[25]
S. M. Tanny, On some numbers related to the Bell numbers, Canad. Math. Bull., 17 (1974/75), 733--738
-
[26]
W. Wang, C. Jia, T. Wang, Some results on the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., 55 (2008), 1322--1332
-
[27]
Z. Zhang, H. Yang, Several identities for the generalized Apostol-Bernoulli polynomials, Comput. Math. Appl., 56 (2008), 2993--2999