Numerical solutions of fuzzy integro-differential equations of the second kind
-
1401
Downloads
-
2838
Views
Authors
Mohammed S. Bani Issa
- Department of Mathematics, P. E. T. Research Foundation, University of Mysore, Mandya 570401, India.
Ahmed A. Hamoud
- Department of Mathematics, Taiz University, Taiz, Yemen.
Kirtiwant P. Ghadle
- Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.
Abstract
In this paper, the Adomian decomposition method, modified Adomian decomposition method, variational iteration method, and homotopy perturbation method are used to solve the fuzzy integro-differential equations. We described the methods and compared the results with their exact solutions to demonstrate the methods' validity and applicability. Examples are provided to illustrate the results.
Share and Cite
ISRP Style
Mohammed S. Bani Issa, Ahmed A. Hamoud, Kirtiwant P. Ghadle, Numerical solutions of fuzzy integro-differential equations of the second kind, Journal of Mathematics and Computer Science, 23 (2021), no. 1, 67--74
AMA Style
Issa Mohammed S. Bani, Hamoud Ahmed A., Ghadle Kirtiwant P., Numerical solutions of fuzzy integro-differential equations of the second kind. J Math Comput SCI-JM. (2021); 23(1):67--74
Chicago/Turabian Style
Issa, Mohammed S. Bani, Hamoud, Ahmed A., Ghadle, Kirtiwant P.. "Numerical solutions of fuzzy integro-differential equations of the second kind." Journal of Mathematics and Computer Science, 23, no. 1 (2021): 67--74
Keywords
- Fuzzy integro-differential equations
- Adomian decomposition method
- modified Adomian decomposition method
- variational iteration method
- homotopy perturbation method
MSC
References
-
[1]
T. Allahviranloo, S. Abbasbandy, O. Sedaghgatfar, P. Darabi, A new method for solving fuzzy integro-differential equation under generalized differentiability, Neural. Comput. Appl., 21 (2012), 191--196
-
[2]
T. Allahviranloo, M. Khezerloo, O. Sedaghatfar, S. Salahshour, Toward the existence and uniqueness of solutions of second-order fuzzy Volterra integro-differential equations with fuzzy kernel, Neural. Comput. Appl., 22 (2013), 133--141
-
[3]
M. S. Bani Issa, A. A. Hamoud, Some approximate methods for solving system of nonlinear integral equations, Technol. Rep. Kansai Univ., 62 (2020), 388--398
-
[4]
M. S. Bani Issa, A. A. Hamoud, Solving systems of Volterra integro-differential equations by using semi-analytical techniques, Technol. Rep. Kansai Univ., 62 (2020), 685--690
-
[5]
P. R. Bhadane, K. P. Ghadle, A. A. Hamoud, Approximate solution of fractional Black-Schole's European option pricing equation by using ETHPM, Nonlinear Funct. Anal. Appl., 25 (2020), 331--344
-
[6]
L. A. Dawood, A. A. Sharif, A. A. Hamoud, Solving higher-order integro differential equations by VIM and MHPM, Int. J. Appl. Math., 33 (2020), 253--264
-
[7]
S. Hajighasemi, T. Allahviranloo, M. Khezerloo, M. Khorasany, S. Salahshour, Existence and uniqueness of solutions of fuzzy Volterra integro-differential equations, 13th International Conference (Dortmund, Germany), 2010 (2010), 491--500
-
[8]
A. A. Hamoud, K. P. Ghadle, Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-differential equations, Indian J. Math., 60 (2018), 375--395
-
[9]
A. A. Hamoud, K. P. Ghadle, The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques, Probl. Anal. Issues Anal., 7 (2018), 41--58
-
[10]
A. A. Hamoud, K. P. Ghadle, Existence and uniqueness of the solution for Volterra-Fredholm integro-differential equations, J. Sib. Fed. Univ. Math. Phys., 11 (2018), 692--701
-
[11]
A. A. Hamoud, K. P. Ghadle, Homotopy analysis method for the first order fuzzy Volterra-Fredholm integro-differential equations, Indones. J. Electr. Eng. Comput. Sci., 11 (2018), 857--867
-
[12]
A. A. Hamoud, K. P. Ghadle, Usage of the homotopy analysis method for solving fractional Volterra-Fredholm integro-differential equation of the second kind, Tamkang J. Math., 49 (2018), 301--315
-
[13]
A. A. Hamoud, K. P. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech., 5 (2019), 58--69
-
[14]
K. H. Hussain, A. H. Hamoud, N. M. Mohammed, Some new uniqueness results for fractional integro-differential equations, Nonlinear Funct. Anal. Appl., 24 (2019), 827--836
-
[15]
N. Mikaeilvand, S. Khakrangin, T. Allahviranloo, Solving fuzzy Volterra integro-differential equation by fuzzy differential transform method, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology (Aix-Les-Bains, France), 2011 (2011), 891--896
-
[16]
J. Y. Park, J. U. Jeong, On existence and uniqueness of solutions of fuzzy integro differential equations, Indian J. Pure Appl. Math., 34 (2003), 1503--1512
-
[17]
M. Zeinali, S. Shahmorad, K. Mirnia, Fuzzy integro-differential equations: Discrete solution and error estimation, Iran. J. Fuzzy Syst., 10 (2013), 107--122