Generalized fractional delay functional equations with Riemann-Stieltjes and infinite point nonlocal conditions
Volume 24, Issue 1, pp 33--48
http://dx.doi.org/10.22436/jmcs.024.01.04
Publication Date: December 23, 2020
Submission Date: July 21, 2020
Revision Date: September 22, 2020
Accteptance Date: November 20, 2020
-
1238
Downloads
-
2722
Views
Authors
M. I. Youssef
- Department of Mathematics, College of Science, Jouf University, P. O. Box 2014, Sakaka, Saudi Arabia.
- Department of Mathematics, Faculty of Education, Alexandria University, Alexandria , Egypt.
Abstract
In the current work, we investigate the solvability of a general class of fractional delay functional equations subject to an infinite point non-classical condition, and the Riemann-Stieltjes integral condition as well. First, the existence of solutions is investigated. Second, the continuous dependence of solution is studied in three different cases. Third, illustrative examples are given to support our results. Our work extends some developments published recently in that field.
Share and Cite
ISRP Style
M. I. Youssef, Generalized fractional delay functional equations with Riemann-Stieltjes and infinite point nonlocal conditions, Journal of Mathematics and Computer Science, 24 (2022), no. 1, 33--48
AMA Style
Youssef M. I., Generalized fractional delay functional equations with Riemann-Stieltjes and infinite point nonlocal conditions. J Math Comput SCI-JM. (2022); 24(1):33--48
Chicago/Turabian Style
Youssef, M. I.. "Generalized fractional delay functional equations with Riemann-Stieltjes and infinite point nonlocal conditions." Journal of Mathematics and Computer Science, 24, no. 1 (2022): 33--48
Keywords
- Fractional integro-differential equation
- existence of solutions
- infinite point non-classical condition
- Riemann-Stieltjes nonlocal condition
- delay function
MSC
References
-
[1]
R. P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge (2001)
-
[2]
R. Almeida, A. B. Malinowska, T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dynam., 11 (2016), 11 pages
-
[3]
A. T. Assanova, On the theory of nonlocal problems with integral conditions for systems of equations of hyperbolic type, Ukrainian Math. J., 70 (2019), 1514--1525
-
[4]
T. M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, John Wiley & Sons, Hoboken (2014)
-
[5]
G. Avalishvili, M. Avalishvili, D. Gordeziani, On a nonlocal problem with integral boundary conditions for a multidimensional elliptic equation, Appl. Math. Lett., 24 (2011), 566--571
-
[6]
R. Barretta, F. Marotti de Sciarra, Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams, Internat. J. Engrg. Sci., 130 (2018), 187--198
-
[7]
A. Bellen, M. Zennaro, Numerical methods for delay differential equations, Oxford University Press, New York (2003)
-
[8]
V. Daftardar-Gejji, Fractional Calculus and Fractional Differential Equations, Birkhauser, Singapore (2019)
-
[9]
M. M. Elborai, M. I. Youssef, On stochastic solutions of nonlocal random functional integral equations, Arab J. Math. Sci., 25 (2019), 180--188
-
[10]
A. El-Sayed, R. Gamal, Infinite point and Riemann-Stieltjes integral conditions for an integro-differential equation, Nonlinear Anal. Model. Control, 24 (2019), 733--754
-
[11]
M. A. E. Herzallah, Notes on some fractional calculus operators and their properties, J. Fract. Calc. Appl., 5 (2014), 10 pages
-
[12]
U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860--865
-
[13]
U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1--15
-
[14]
A. I. Kozhanov, Nonlocal problems with integral conditions for elliptic equations, Complex Var. Elliptic Equ., 64 (2019), 741--752
-
[15]
L. T. P. Ngoc, N. A. Triet, A. P. N. Dinh, N. T. Long, Existence and exponential decay of solutions for a wave equation with integral nonlocal boundary conditions of memory type, Numer. Funct. Anal. Optim., 38 (2017), 1173--1207
-
[16]
A. Ricardo, Variational Problems Involving a Caputo-Type Fractional Derivative, J. Optim. Theory Appl., 174 (2017), 276--294
-
[17]
H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213--231
-
[18]
K. Szymańska-Dębowska, On the existence of solutions for nonlocal boundary value problems, Georgian Math. J., 22 (2015), 273--279
-
[19]
M. I. Youssef, Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function, J. Nonlinear Sci. Appl., 13 (2020), 293--302
-
[20]
M. I. Youssef, On the solvability of a general class of a coupled system of stochastic functional integral equations, Arab J. Basic Appl. Sci., 27 (2020), 142--148