Oscillatory behavior of second order delay dynamic equations with a sub-linear neutral term on time scales
Volume 24, Issue 2, pp 97--109
http://dx.doi.org/10.22436/jmcs.024.02.01
Publication Date: January 18, 2021
Submission Date: October 29, 2020
Revision Date: November 22, 2020
Accteptance Date: December 02, 2020
-
1312
Downloads
-
2874
Views
Authors
A. A. Soliman
- Department of Mathematics, Faculty of Science, Benha University, Benha-Kalubia 13518, Egypt.
A. M. Hassan
- Department of Mathematics, Faculty of Science, Benha University, Benha-Kalubia 13518, Egypt.
S. E. Affan
- Department of Mathematics, Faculty of Science, Benha University, Benha-Kalubia 13518, Egypt.
Abstract
This work concerned with the oscillation of solutions of a~class of second order delay dynamic equations with a sub-linear neutral term. The obtained results essentially improve, complement and simplify a~number of related ones in the literature. Some examples are given to illustrate our main results.
Share and Cite
ISRP Style
A. A. Soliman, A. M. Hassan, S. E. Affan, Oscillatory behavior of second order delay dynamic equations with a sub-linear neutral term on time scales, Journal of Mathematics and Computer Science, 24 (2022), no. 2, 97--109
AMA Style
Soliman A. A., Hassan A. M., Affan S. E., Oscillatory behavior of second order delay dynamic equations with a sub-linear neutral term on time scales. J Math Comput SCI-JM. (2022); 24(2):97--109
Chicago/Turabian Style
Soliman, A. A., Hassan, A. M., Affan, S. E.. "Oscillatory behavior of second order delay dynamic equations with a sub-linear neutral term on time scales." Journal of Mathematics and Computer Science, 24, no. 2 (2022): 97--109
Keywords
- Second order
- sub-linear neutral term
- oscillation
- Riccati transformation
MSC
References
-
[1]
R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math., 30 (2014), 1--6
-
[2]
R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of second-order Emden-Fowler neutral delay differential equations, Ann. Mat. Pura Appl., 193 (2014), 1861--1875
-
[3]
R. P. Agarwal, D. O’Regan, S. H. Saker, Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math. Anal. Appl., 300 (2004), 203--217
-
[4]
G. Ayyappan, G. Nithyakala, Some oscillation results for even order delay difference equations with a sublinear neutral term, Abstr. Appl. Anal., 2018 (2018), 7 pages
-
[5]
B. Baculíková, J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Modelling, 52 (2010), 215--226
-
[6]
M. Bohner, H. A. El-Morshedy, S. R. Grace, I. Sager, Oscillation of second-order nonlinear difference equations with sublinear neutral term, Math. Morav., 23 (2019), 1--10
-
[7]
M. Bohner, S. Grace, I. Jadlovska, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), 12 pages
-
[8]
M. Bohner, T. S. Hassan, T. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indag. Math., 29 (2018), 548--560
-
[9]
M. Bohner, T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72--76
-
[10]
M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhauser, Boston (2001)
-
[11]
G. E. Chatzarakis, S. R. Grace, I. Jadlovska, T. Li, E. Tunc, Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients, Complexity, 2019 (2019), 8 pages
-
[12]
C. Dharuman, R. J. Graef, E. Thandapani, S. K. Vidhyaa, Oscillation of second order difference equation with a sub-linear neutral term, J. Math. Appl., 40 (2017), 59--67
-
[13]
J. Džurina, S. R. Grace, I. Jadlovská, T. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910--922
-
[14]
J. Dzurina, E. Thandapani, B. Baculikova, C. Dharuman, N. Prabaharan, Oscillation of Second Order Nonlinear Differential Equations with Several Sub-Linear Neutral Terms, Nonlinear Dyn. Syst. Theory, 19 (2019), 124--132
-
[15]
L. Erbe, T. S. Hassan, A. Peterson, Oscillation criteria for nonlinear functional neutral dynamic equations on time scales, J. Difference Equ. Appl., 15 (2009), 1097--1116
-
[16]
S. R. Grace, I. Jadlovska, A. Zafer, On Oscillation of Second Order Delay Differential Equations with a Sublinear Neutral Term, Mediterr. J. Math., 17 (2020), 1--11
-
[17]
B. Karpuz, Ö. Öcalan, New oscillation tests and some refinements for first-order delay dynamic equations, Turkish J. Math., 40 (2016), 850--863
-
[18]
T. Li, R. P. Agarwal, M. Bohner, Some oscillation results for second-order neutral dynamic equations, Hacet. J. Math. Stat., 41 (2012), 715--721
-
[19]
T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 1--18
-
[20]
T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr, 288 (2015), 1150--1162
-
[21]
T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489--500
-
[22]
T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 7 pages
-
[23]
T. Li, S. H. Saker, A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4185--4188
-
[24]
T. Li, C. Zhang, E. Thandapani, Asymptotic behavior of fourth-order neutral dynamic equations with noncanonical operators, Taiwanese J. Math., 18 (2014), 1003--1019
-
[25]
S. Tamilvanan, E. Thandapani, J. Dzurina, Oscillation of second order nonlinear differential equation with sublinear neutral term, Differ. Equ. Appl., 9 (2017), 29--35
-
[26]
E. Thandapani, M. Vijaya, T. Li, On the oscillation of third order half-linear neutral type difference equations, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 1--13
-
[27]
C. Zhang, R. P. Agarwal, M. Bohner, T. Li, Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators, Bull. Malays. Math. Sci. Soc., 38 (2015), 761--778