Hyers-Ulam-Rassias stability of abstract second-order linear dynamic equations on time scales
Volume 24, Issue 2, pp 110--118
http://dx.doi.org/10.22436/jmcs.024.02.02
Publication Date: January 18, 2021
Submission Date: October 23, 2020
Revision Date: November 05, 2020
Accteptance Date: November 16, 2020
-
1207
Downloads
-
2703
Views
Authors
Maryam Alghamdi
- Department of Mathematics, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia.
Alaa Aljehani
- Department of Mathematics, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia.
Alaa E. Hamza
- Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt.
Abstract
In this paper, we obtain new sufficient conditions for Hyers-Ulam and Hyers-Ulam-Rassias stability of abstract second-order linear dynamic equations on time scales. Also a new sufficient condition for the existence and uniqueness of solutions is established, via Banach's fixed point theorem. Finally, two illustrative examples are given to demonstrate the applicability of the theoretical results.
Share and Cite
ISRP Style
Maryam Alghamdi, Alaa Aljehani, Alaa E. Hamza, Hyers-Ulam-Rassias stability of abstract second-order linear dynamic equations on time scales, Journal of Mathematics and Computer Science, 24 (2022), no. 2, 110--118
AMA Style
Alghamdi Maryam, Aljehani Alaa, Hamza Alaa E., Hyers-Ulam-Rassias stability of abstract second-order linear dynamic equations on time scales. J Math Comput SCI-JM. (2022); 24(2):110--118
Chicago/Turabian Style
Alghamdi, Maryam, Aljehani, Alaa, Hamza, Alaa E.. "Hyers-Ulam-Rassias stability of abstract second-order linear dynamic equations on time scales." Journal of Mathematics and Computer Science, 24, no. 2 (2022): 110--118
Keywords
- Linear dynamic equations on time scales
- Hyers-Ulam stability
- Hyers-Ulam-Rassias stability
MSC
References
-
[1]
M. Alghamdi, M. Alharbi, M. Bohner, A. E. Hamza, Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order nonlinear dynamic equations, Submitted, (),
-
[2]
M. Alghamdi, A. Aljehani, M. Bohner, A. E. Hamza, Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear dynamic equations, Publ. Inst. Math. (Beograd)(N.S.), (2020), To appear
-
[3]
C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1988), 373--380
-
[4]
D. R. Anderson, B. Gates, D. Heuer, Hyers-Ulam stability of second-order linear dynamic equations on time scales, Commun. Appl. Anal., 16 (2012), 281--291
-
[5]
D. R. Anderson, M. Onitsuka, Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales, Demonstr. Math., 51 (2018), 198--210
-
[6]
D. R. Anderson, M. Onitsuka, Hyers-Ulam stability for a discrete time scale with two step sizes, Appl. Math. Comput., 344/345 (2019), 128--140
-
[7]
D. R. Anderson, M. Onitsuka, Best constant for Hyers-Ulam stability of second-order h-difference equations with constant coefficients, Results Math., 74 (2019), 16 pages
-
[8]
A. R. Baias, D. Popa, On Ulam stability of a linear difference equation in Banach spaces, Bull. Malays. Math. Sci. Soc, 43 (2020), 1357--1371
-
[9]
M. Bohner, A. Peterson, Dynamic equations on time scales, Birkhauser, Boston (2001)
-
[10]
M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhauser, Boston (2003)
-
[11]
J. Brzdek, P. Wojcik, On approximate solutions of some difference equations, Bull. Aust. Math. Soc., 95 (2017), 476--481
-
[12]
C. Chen, M. Bohner, B. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Methods Appl. Sci., 42 (2019), 7461--7470
-
[13]
A. E. Hamza, N. A. Yaseen, Hyers-Ulam stability of abstract second-order linear dynamic equations on time scales, Int. J. Math. Anal., 8 (2014), 1421--1432
-
[14]
A. E. Hamza, M. Alghamdi, A. Aljehani, On Hyers-Ulam and Hyers-Ulam-Rassias stability of second-order linear dynamic equations on time scales, Adv. Dyn. Syst. Appl., 15 (2020), 99--111
-
[15]
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222--224
-
[16]
P. Gavruta, L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl., 1 (2010), 11--18
-
[17]
S.-M. Jung, Hyers-Ulam stability of linear differential equations of the first order (III), J. Math. Anal. Appl., 311 (2005), 139--146
-
[18]
S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order (II), Appl. Math. Lett., 19 (2006), 854--858
-
[19]
Y. Li, Y. Shen, Hyers-Ulam stability of nonhomogeneous linear differential equations of second order, Int. J. Math. Math. Sci., 2009 (2009), 7 pages
-
[20]
Y. Li, Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett., 23 (2010), 306--309
-
[21]
T. Li, G. Viglialoro, Analysis and explicit solvability of degenerate tensorial problems, Bound. Value Probl., 2018 (2018), 13 pages
-
[22]
T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Jpn., 55 (2002), 17--24
-
[23]
T. Miura, S. Miyajima, S.-E.Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl., 286 (2003), 1136--1146
-
[24]
T. Miura, S.-E. Takahasi, H. Choda, On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J. Math., 24 (2001), 467--476
-
[25]
D. Popa, Hyers-Ulam stability of the linear recurrence with constant coefficients, Adv. Difference Equ., 2005 (2005), 101--107
-
[26]
D. Popa, I. Raşa, On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal. Appl., 381 (2011), 530--537
-
[27]
T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297--300
-
[28]
I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes¸-Bolyai Math., 54 (2009), 125--133
-
[29]
I. A. Rus, Gronwall lemma approach to the Hyers-Ulam-Rassias stability of an integral equation, Springer, New York, 35 (2010), 147--152
-
[30]
Y. Shen, The Ulam stability of first order linear dynamic equations on time scales, Results Math., 72 (2017), 1881--1895
-
[31]
Y.-H. Shen, Y.-J. Li, Hyers-Ulam stability of first order nonhomogeneous linear dynamic equations on time scales, Commun. Math. Res., 35 (2019), 139--148
-
[32]
S.-E.Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation y0 = λy, Bull. Korean Math. Soc., 39 (2002), 309--315
-
[33]
S. M. Ulam, A collection of mathematical problems, Interscience Publishers, New York-London (1960)
-
[34]
G. Viglialoro, J. Murcia, A singular elliptic problem related to the membrane equilibrium equations, Int. J. Comput. Math., 90 (2013), 2185--2196
-
[35]
G. Wang, M. Zhou, L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 21 (2008), 1024--1028
-
[36]
A. Zada, S. O. Shah, S. Ismail, T. Li, Hyers-Ulam stability in terms of dichotomy of first order linear dynamic systems, Punjab Univ. J. Math., 49 (2017), 37--47