Derivative-free SMR conjugate gradient method for constraint nonlinear equations
Volume 24, Issue 2, pp 147--164
http://dx.doi.org/10.22436/jmcs.024.02.06
Publication Date: January 23, 2021
Submission Date: August 03, 2020
Revision Date: December 13, 2020
Accteptance Date: January 02, 2021
-
1391
Downloads
-
2566
Views
Authors
Abdulkarim Hassan Ibrahim
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand.
Kanikar Muangchoo
- Department of Mathematics and Statistics, Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon (RMUTP), 1381 Pracharat 1 Road, Wongsawang, Bang Sue, Bangkok 10800, Thailand.
Nur Syarafina Mohamed
- Universiti Kuala Lumpur, Malaysian Institute of Industrial Technology, Malaysia.
Auwal Bala Abubakar
- Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano, Kano, Nigeria.
- Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, Medunsa-0204, South Africa.
Abstract
Based on the SMR conjugate gradient method for unconstrained optimization proposed by Mohamed et al. [N. S. Mohamed, M. Mamat, M. Rivaie, S. M. Shaharuddin, Indones. J. Electr. Eng. Comput. Sci., \(\bf 11\) (2018), 1188--1193] and the Solodov and Svaiter projection technique, we propose a derivative-free SMR method for solving nonlinear equations with convex constraints. The proposed method can be viewed as an extension of the SMR method for solving unconstrained optimization. The proposed method can be used to solve large-scale nonlinear equations with convex constraints because of derivative-free and low storage. Under the assumption that the underlying mapping is Lipschitz continuous and satisfies a weaker monotonicity assumption, we prove its global convergence. Preliminary numerical results show that the proposed method is promising.
Share and Cite
ISRP Style
Abdulkarim Hassan Ibrahim, Kanikar Muangchoo, Nur Syarafina Mohamed, Auwal Bala Abubakar, Derivative-free SMR conjugate gradient method for constraint nonlinear equations, Journal of Mathematics and Computer Science, 24 (2022), no. 2, 147--164
AMA Style
Ibrahim Abdulkarim Hassan, Muangchoo Kanikar, Mohamed Nur Syarafina, Abubakar Auwal Bala, Derivative-free SMR conjugate gradient method for constraint nonlinear equations. J Math Comput SCI-JM. (2022); 24(2):147--164
Chicago/Turabian Style
Ibrahim, Abdulkarim Hassan, Muangchoo, Kanikar, Mohamed, Nur Syarafina, Abubakar, Auwal Bala. "Derivative-free SMR conjugate gradient method for constraint nonlinear equations." Journal of Mathematics and Computer Science, 24, no. 2 (2022): 147--164
Keywords
- Nonlinear equations
- conjugate gradient method
- projection method
- global convergence
MSC
References
-
[1]
A. B. Abubakar, A. H. Ibrahim, A. B. Muhammad, C. Tammer, A modified descent Dai-Yuan conjugate gradient method for constraint nonlinear monotone operator equations, Appl. Anal. Optim., 4 (2020), 1--24
-
[2]
A. B. Abubakar, P. Kumam, A. H. Ibrahim, J. Rilwan, Derivative-free hs-dy-type method for solving nonlinear equations and image restoration, Heliyon, 6 (2020), 1--14
-
[3]
A. B. Abubakar, J. Rilwan, S. E. Yimer, A. H. Ibrahim, I. Ahmed, Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints, Thai J. Math., 18 (2020), 501--517
-
[4]
M. W. Berry, M. Browne, A. N. Langville, V. Pauca, R. J. Plemmons, Algorithms and applications for approximate nonnegative matrix factorization, Comput. Statist. Data Anal., 52 (2007), 155--173
-
[5]
Y. Bing, G. Lin, An efficient implementation of Merrill’s method for sparse or partially separable systems of nonlinear equations, SIAM J. Optim., 1 (1991), 206--221
-
[6]
T. Blumensath, Compressed sensing with nonlinear observations and related nonlinear optimization problems, IEEE Trans. Inform. Theory, 59 (2013), 3466--3474
-
[7]
W. L. Cruz, A spectral algorithm for large-scale systems of nonlinear monotone equations, Numer. Algorithms, 76 (2017), 1109--1130
-
[8]
W. L. Cruz, J. M. Mart´ınez, M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comp., 75 (2006), 1429--1448
-
[9]
Z. Dai, X. Dong, J. Kang, L. Hong, Forecasting stock market returns: New technical indicators and two-step economic constraint method, North Am. J. Econ. Finance, 53 (2020), 1--12
-
[10]
J. E. Dennis, Jr., J. J. More, A characterization of superlinear convergence and its application to quasi-newton methods, Math. Comp., 28 (1974), 549--560
-
[11]
J. E. Dennis, Jr., R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Prentice Hall, Englewood Cliffs (1983)
-
[12]
Y. Ding, Y. Xiao, J. Li, A class of conjugate gradient methods for convex constrained monotone equations, Optimization, 66 (2017), 2309--2328
-
[13]
S. P. Dirkse, M. C. Ferris, Mcplib: A collection of nonlinear mixed complementarity problems, Optim. Methods Softw., 5 (1995), 319--345
-
[14]
S. S. Djordjevic, New Hybrid Conjugate Gradient Method As A Convex Combination of Ls and Fr Methods, Acta Math. Sci. Ser. B (Engl. Ed.), 39 (2019), 214--228
-
[15]
E. D. Dolan, J. J. More, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201--213
-
[16]
X. Fang, A class of new derivative-free gradient type methods for large-scale nonlinear systems of monotone equations, J. Inequal. Appl., 2020 (2020), 13 pages
-
[17]
D. Feng, M. Sun, X. Wang, A family of conjugate gradient methods for large-scale nonlinear equations, J. Inequal. Appl., 2017 (2017), 8 pages
-
[18]
A. H. Ibrahim, A. I. Garba, H. Usman, J. Abubakar, A. B. Abubakar, Derivative-free rmil conjugate gradient algorithm for convex constrained equations, Thai J. Math., 18 (2020), 212--232
-
[19]
A. H. Ibrahim, P. Kumam, A. B. Abubakar, J. Abubakar, A. B. Muhammad, Least-square-based three-term conjugate gradient projection method for `1 -norm problems with application to compressed sensing, Mathematics, 8 (2020), 1--21
-
[20]
A. H. Ibrahim, P. Kumam, A. B. Abubakar, W. Jirakitpuwapat, J. Abubakar, A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing, Heliyon, 6 (2020), 1--17
-
[21]
A. H. Ibrahim, P. Kumam, A. B. Abubakar, U. B. Yusuf, J. Rilwan, Derivative-free conjugate residual algorithms for convex constraints nonlinear monotone equations and signal recovery, J. Nonlinear Convex Anal., 21 (2020), 1959--1972
-
[22]
A. H. Ibrahim, P. Kumam, A. B. Abubakar, U. B. Yusuf, S. E. Yimer, K. O. Aremu, , , 6 (2021), 235–260., An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration, Aims Math., 6 (2021), 235--260
-
[23]
A. H. Ibrahim, P. Kumam, W. Kumam, A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration, IEEE Access, 8 (2020), 162714--162729
-
[24]
A. H. Ibrahim, K. Muangchoo, A. B. Abubakar, A. D. Adedokun, H. Mohammed, Spectral conjugate gradient like method for signal reconstruction, Thai J. Math.,, 18 (2020), 2013--2022
-
[25]
D. D. Lee, H. S. Seung, Algorithms for Non-negative Matrix Factorization, Adv. Neural Inf. Process. Syst., 2001 (2001), 556--562
-
[26]
J. Liu, Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numer. Algorithms, 82 (2019), 245--262
-
[27]
N. S. Mohamed, M. Mamat, M. Rivaie, S. M. Shaharuddin, Global convergence of a new coefficient nonlinear conjugate gradient method, Indones J. Electr. Eng. Comput. Sci., (),
-
[28]
L. Q. Qi, J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58 (1993), 353--367
-
[29]
M. Rivaie, M. Mamat, L. W. June, I. Mohd, A new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput., 218 (2012), 11323--11332
-
[30]
M. V. Solodov, B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765--776
-
[31]
M. Sun, J. Liu, Three derivative-free projection methods for nonlinear equations with convex constraints, J. Appl. Math. Comput., 47 (2015), 265--276
-
[32]
N. Yamashita, M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, Comput. [Suppl.], 15 (2001), 239--249
-
[33]
Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu, Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416--2423
-
[34]
L. Zhang, W. Zhou, Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196 (2006), 478--484