A new strongly convergent algorithm to solve pseudomonotone equilibrium problems in a real Hilbert space
Volume 24, Issue 4, pp 308322
http://dx.doi.org/10.22436/jmcs.024.04.03
Publication Date: April 05, 2021
Submission Date: October 25, 2020
Revision Date: January 29, 2021
Accteptance Date: February 23, 2021
Authors
Kanikar Muangchoo
 Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon (RMUTP), 1381 Pracharat 1 Road, Wongsawang, Bang Sue, Bangkok 10800, Thailand.
Abstract
The purpose of this research is to formulate a new algorithm by combining a viscositytype method with the extragradient algorithm and explicit step size rule to figure out the equilibrium problems involving pseudomonotone and Lipschitztype continuous bifunction in a real Hilbert space. A strong convergence theorem is wellestablished by the use of certain mild conditions on the bifunction, as well as some conditions on the iterative control parameters. The designed algorithm uses a nonmonotonic step size rule based on the local bifunction information. Applications of the main results are also presented to solve variational inequalities and fixedpoint problems. The computational behaviour of the designed algorithm on a test problem is performed related to other existing algorithms.
Share and Cite
ISRP Style
Kanikar Muangchoo, A new strongly convergent algorithm to solve pseudomonotone equilibrium problems in a real Hilbert space, Journal of Mathematics and Computer Science, 24 (2022), no. 4, 308322
AMA Style
Muangchoo Kanikar, A new strongly convergent algorithm to solve pseudomonotone equilibrium problems in a real Hilbert space. J Math Comput SCIJM. (2022); 24(4):308322
Chicago/Turabian Style
Muangchoo, Kanikar. "A new strongly convergent algorithm to solve pseudomonotone equilibrium problems in a real Hilbert space." Journal of Mathematics and Computer Science, 24, no. 4 (2022): 308322
Keywords
 Equilibrium problem
 strong convergence
 viscosity method
 Lipschitztype conditions
 fixed point problems
 variational inequality problem
MSC
References

[1]
A. Antipin, Equilibrium programming: proximal methods, Comput. Math. Math. Phys., 37 (1997), 12851296

[2]
H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, Cham (2017)

[3]
M. Bianchi, S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90 (1996), 3143

[4]
G. Bigi, M. Castellani, M. Pappalardo, M. Passacantando, Existence and solution methods for equilibria, Eur. J. Oper. Res.,, 227 (2013), 111

[5]
E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123145

[6]
F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197228

[7]
Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318335

[8]
K. Fan, A minimax inequality and applications, Inequalities III, Academic Press, New York (1972)

[9]
S. D. Flam, A. S. Antipin, Equilibrium programming using proximallike algorithms, Math. Programming, 78 (1996), 2941

[10]
F. Giannessi, A. Maugeri, P. M. Pardalos, Equilibrium problems: nonsmooth optimization and variational inequality models, Springer Science & Business Media, New York (2006)

[11]
D. V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. RACSAM, 111 (2017), 823840

[12]
D. V. Hieu, J. J. Strodiot, L. D. Muu, Strongly convergent algorithms by using new adaptive regularization parameter for equilibrium problems, J. Comput. Appl. Math., 376 (2020), 21 pages

[13]
S. I. Lyashko, V. V. Semenov, A new twostep proximal algorithm of solving the problem of equilibrium programming, in Optimization and Its Applications in Control and Data Sciences, Springer, Cham (2016)

[14]
P.E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, SetValued Anal., 16 (2008), 899912

[15]
G. Mastroeni, On auxiliary principle for equilibrium problems, in Nonconvex Optimization and Its Applications, Springer, Boston (2003)

[16]
A. Moudafi, Viscosity approximation methods for fixedpoints problems, J. Math. Anal. Appl., 241 (2000), 4655

[17]
L. D. Muu, W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal., 18 (1992), 11591166

[18]
H. U. Rehman, P. Kumam, A. B. Abubakar, Y. J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Comput. Appl. Math., 39 (2020), 126

[19]
H. U. Rehman, P. Kumam, I. K. Argyros, N. A. Alreshidi, W. Kumam, W. Jirakitpuwapat, A selfadaptive extragradient methods for a family of pseudomonotone equilibrium programming with application in different classes of variational inequality problems, Symmetry, 12 (2020), 127

[20]
H. U. Rehman, P. Kumam, I. K. Argyros, W. Deebani, W. Kumam, Inertial extragradient method for solving a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces with application in variational inequality problem, Symmetry, 12 (2020), 124

[21]
H. U. Rehman, P. Kumam, I. K. Argyros, M. Shutaywi, Z. Shah, Optimization based methods for solving the equilibrium problems with applications in variational inequality problems and solution of nash equilibrium models, Math., 8 (2020), 128

[22]
H. U. Rehman, P. Kumam, Y. J. Cho, Y. I. Suleiman, W. Kumam, Modified Popov’s explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Methods Softw., 36 (2021), 82113

[23]
H. U. Rehman, P. Kumam, Y. J. Cho, P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibrium problems, J. Inequal. Appl., 2019 (2019), 125

[24]
H. U. Rehman, P. Kumam, Q.L. Dong, Y. J. Cho, A modified selfadaptive extragradient method for pseudomonotone equilibrium problem in a real Hilbert space with applications, Math. Methods Appl. Sci., 44 (2021), 35273547

[25]
H. U. Rehman, P. Kumam, Q.L. Dong, Y. Peng, W. Deebani, A new popov’s subgradient extragradient method for two classes of equilibrium programming in a real Hilbert space, Optimization, 2020 (2020), 136

[26]
H. U. Rehman, P. Kumam, W. Kumam, M. Shutaywi, W. Jirakitpuwapat, The inertial subgradient extragradient method for a class of pseudomonotone equilibrium problems, Symmetry, 12 (2020), 125

[27]
H. U. Rehman, P. Kumam, M. Shutaywi, N. A. Alreshidi, W. Kumam, Inertial optimization based twostep methods for solving equilibrium problems with applications in variational inequality problems and growth control equilibrium models, Energies, 13 (2020), 128

[28]
H. U. Rehman, N. Pakkaranang, P. Kumam, Y. J. Cho, Modified subgradient extragradient method for a family of pseudomonotone equilibrium problems in real a Hilbert space, J. Nonlinear Convex Anal., 21 (2020), 20112025

[29]
R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton (1970)

[30]
G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 44134416

[31]
D. Q. Tran, M. L. Dung, V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization, 57 (2008), 749776

[32]
H.K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc., 65 (2002), 109113

[33]
P. Yordsorn, P. Kumam, H. U. Rehman, Modified twostep extragradient method for solving the pseudomonotone equilibrium programming in a real Hilbert space, Carpathian J. Math., 36 (2020), 313330