Effect of an amplitude modulated force on vibrational resonance, chaos, and multistability in a modified Van der Pol-Duffing oscillator
Authors
C. H. Miwadinou
- Laboratoire de Mecanique des Fluides, de la Dynamique Nonlineaire et de la Modelisation des Systemes Biologiques (LMFDNMSB), Institut de Mathematiques et de Sciences Physiques, Porto-Novo, Benin.
- Departement de Physique, ENS-Natitingou, Universite Nationale des Sciences, Technologies, Ingenierie et Mathematiques (UNSTIM), Abomey, Benin.
L. A. Hinvi
- Laboratoire de Mecanique des Fluides, de la Dynamique Nonlineaire et de la Modelisation des Systemes Biologiques (LMFDNMSB), Institut de Mathematiques et de Sciences Physiques, Porto-Novo, Benin.
- Departement de Genie Mecanique et Productique GMP, INSTI-Lokossa, Universite Nationale des Sciences, Technologies, Ingenierie et Mathematiques (UNSTIM), Abomey, Benin.
C. Ainamon
- Laboratoire de Mecanique des Fluides, de la Dynamique Nonlineaire et de la Modelisation des Systemes Biologiques (LMFDNMSB), Institut de Mathematiques et de Sciences Physiques, Porto-Novo, Benin.
A. V. Monwanou
- Laboratoire de Mecanique des Fluides, de la Dynamique Nonlineaire et de la Modelisation des Systemes Biologiques (LMFDNMSB), Institut de Mathematiques et de Sciences Physiques, Porto-Novo, Benin.
Abstract
This paper deals with the effects of an amplitude modulated (AM) excitation on the nonlinear dynamics of reactions between four molecules.
The computation of the fixed points of the autonomous nonlinear chemical system has been made in detail using Cardan's method.
Routes to chaos have been investigated through bifurcations structures, Lyapunov exponent and phase portraits.
The effects of the control force on chaotic motions have been strongly analyzed and the control efficiency is found in the cases
\(g=0\) (unmodulated case), \(g\neq 0\) with \(\Omega=n\omega\); \(n\) a natural number and \(\frac{\Omega}{\omega}\neq\frac{p}{q}\); \(p\) and \(q\)
are simple positive integers. Vibrational Resonance (VR), hysteresis and coexistence of several attractors have been studied in details
based on the relationship between the frequencies of the AM force. Results of analytical investigations are validated and
complemented by numerical simulations.
Share and Cite
ISRP Style
C. H. Miwadinou, L. A. Hinvi, C. Ainamon, A. V. Monwanou, Effect of an amplitude modulated force on vibrational resonance, chaos, and multistability in a modified Van der Pol-Duffing oscillator, Journal of Nonlinear Sciences and Applications, 16 (2023), no. 2, 111--122
AMA Style
Miwadinou C. H., Hinvi L. A., Ainamon C., Monwanou A. V., Effect of an amplitude modulated force on vibrational resonance, chaos, and multistability in a modified Van der Pol-Duffing oscillator. J. Nonlinear Sci. Appl. (2023); 16(2):111--122
Chicago/Turabian Style
Miwadinou, C. H., Hinvi, L. A., Ainamon, C., Monwanou, A. V.. "Effect of an amplitude modulated force on vibrational resonance, chaos, and multistability in a modified Van der Pol-Duffing oscillator." Journal of Nonlinear Sciences and Applications, 16, no. 2 (2023): 111--122
Keywords
- Modified Van der Pol oscillator
- Cardan's method
- chaos
- coexisting attractors
- vibrational resonance
MSC
References
-
[1]
H. Binous, A. Bellagi, Introducing nonlinear dynamics to chemical and biochemical engineering graduate students using MATHEMATICA©, Comput. Appl. Eng. Educ., 27 (2018), 1–19
-
[2]
I. I. Blekhman, P. S. Landa, Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation, Int. J. Non-linear Mech., 39 (2004), 421–426
-
[3]
H. G. Enjieu Kadji, B. R. Nana Nbendjo, Passive aerodynamics control of plasma instabilities, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1779–1794
-
[4]
M. Gruebelle, P. G. Wolynes, Vibrational Energy Flow and Chemical Reactions, Acc. Chem. Res., 37 (2004), 261–267
-
[5]
S. Guruparan, D. N. B. Ravindran, V. Ravichandran, V. Chinnathambi, S. Rajasekar, Hysteresis, Vibrational Resonance and Chaos in Brusselator Chemical System under the Excitation of Amplitude Modulated Force, Chem. sci. rev. lett., 4 (2015), 870–879
-
[6]
C. Hayashi, Nonlinear Oscillations in Physical Systems, McGraw-Hill Book Co., New York-Toronto-London (1964)
-
[7]
R. Imbihl, G. Ertl, Oscillatory kinetics in heterogeneous catalysis, Chem. Rev., 95 (1995), 697–733
-
[8]
C. Jeevarathinam, S. Rajasekar, M. A. F. Sanj ´ uan, Vibrational Resonance in the Duffing Oscillator with Distributed Time-Delayed Feedback, J. Appl. Nonlinear Dyn., 4 (2015), 1–20
-
[9]
I. G. Kevrekidis, L. D. Shmidt, R. Aris, Some common features of periodically forced reacting systems, Chem. Eng. Sci., 41 (1986), 1263–1276
-
[10]
P. S. Landa, P. V. E. McClintock, Vibrational resonance, J. Phys. A, 33 (2000), L433–L438
-
[11]
G. D. Leutcho, S. Jafari, I. I. Hamarash, J. Kengne, Z. Tabekoueng Njitacke, I. Hussain, A new megastable nonlinear oscillator with infinite attractors, Chaos Solitons Fractals, 134 (2020), 7 pages
-
[12]
G. D. Leutcho, A. J. M. Khalaf, Z. Tabekoueng Njitacke, T. Fonzin Fozin, J. Kengne, S. Jafari, I. Hussain, A new oscillator with mega-stability and its Hamilton energy: infinite coexisting hidden and self-excited attractors, Chaos, 30 (2020), 8 pages
-
[13]
C. H. Miwadinou, A. V. Monwanou, L. A. Hinvi, J. B. Chabi Orou, Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh-Li´enard oscillator, Chaos Solitons Fractals, 113 (2018), 89–101
-
[14]
C. H. Miwadinou, A. V. Monwanou, A. A. Koukpemedji, Y. J. F. Kpomahou, J. B. Chabi Orou, Chaotic Motions in Forced Mixed Rayleigh-Li´enard Oscillator with External and Parametric Periodic-Excitations, Int. J. Bifurc. Chaos, 28 (2018), 1–16
-
[15]
C. H. Miwadinou, A. V. Monwanou, J. Yovogan, L. A. Hinvi, P. R. Nwagoum Tuwa, J. B. Chabi Orou, Modeling nonlinear dissipative chemical dynamics by a forced modified Van der Pol-Duffing oscillator with asymmetric potential: Chaotic behaviors predictions, Chin. J. Phys., 56 (2018), 1089–1104
-
[16]
A. V. Monwanou, A. A. Koukp´em`edji, C. Ainamon, P. R. Nwagoum Tuwa, C. H. Miwadinou, J. B. Chabi Orou, Nonlinear Dynamics in a Chemical Reaction under an Amplitude-Modulated Excitation: Hysteresis, Vibrational Resonance, Multistability and Chaos, Complexity, 2020 (2020), 1–16
-
[17]
T. R. Mukundan, Solution of cubic equations: An alternative method, Resonance, 15 (2020), 347–350
-
[18]
A. H. Nayfeh, Introduction to perturbation techniques, Wiley-Interscience [John Wiley & Sons], New York (1981)
-
[19]
G. Nicolis, I. Prigogine, Self-organization in nonequilibrium systems, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney (1977)
-
[20]
Z. T. Njitacke, S. D. Isaac, T. Nestor, J. Kengne, Window of multistability and its control in a simple 3D Hopfield neural network: application to biomedical image encryption, Neural. Comput. Appl., 33 (2021), 6733–6752
-
[21]
Z. T. Njitacke, R. L. T. Mogue, G. D. Leutcho, T. Fonzin Fozin, J. Kengne, Heterogeneous multistability in a novel system with purely nonlinear terms, Int. J. Electron., 108 (2021), 1166–1182
-
[22]
D. L. Olabod´e, C. H. Miwadinou, V. A. Monwanou, J. B. Chabi Orou, Effects of passive hydrodynamics force on harmonic and chaotic oscillations in nonlinear chemical dynamics, Phys. D, 386/387 (2019), 49–59
-
[23]
K. Rajagopal, S. T. Kingni, G. H. Kom, V.-T. Pham, A. Karthikeyan, S. Jafari, Self-Excited and Hidden Attractors in a Simple Chaotic Jerk System and in Its Time-Delayed Form: Analysis, Electronic Implementation, and Synchronization, J. Korean Phys. Soc., 77 (2020), 145–152
-
[24]
T. O. Roy-Layinde, J. A. Laoye, O. O. Popoola, U. E. Vincent, Analysis of vibrational resonance in bi-harmonically driven plasma, Chaos, 26 (2016), 1–9
-
[25]
P. Sarkar, D. S. Ray, Vibrational antiresonance in nonlinear coupled systems, Phys. Rev. E, 99 (2019), 1–7
-
[26]
A. Shabunin, V. Astakhov, V. Demidov, A.Provata, F. Baras, G. Nicolis, V. Anishchenko, Modeling chemical reactions by forced limit-cycle oscillator: synchronization phenomena and transition to chaos, Chaos Solit. Fract., 15 (2003), 395–405
-
[27]
A. V. Shabunin, F. Baras, A. Provata, Oscillatory reactive dynamics on surfaces: a lattice limit cycle model, Phys. Rev. E, 66 (2002), 1–11
-
[28]
S. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, 2nd ed.,, CRC Press, Boca Raton (2018)
-
[29]
C. G. Takoudis, L. D. Schmidt, R. Aris, Isothermal sustained oscillations in very simple surface reaction, Surf. Sci., 105 (1981), 325–333
-
[30]
M. A. Taylor, I. G. Kevrekidis, Some common dynamics features of coupled reacting systems, Phys. D, 51 (1991), 274–292
-
[31]
C. Zhang, Q. Bi, X. Han, Z. Zhang, On two-parameter bifurcation analysis of switched system composed of Duffing and van der Pol oscillators, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 750–757
-
[32]
C. Zhang, X. Ma, Q. Bi, Complex mixed-mode oscillations based on a modified Rayleigh-Duffing oscillator driven by low-frequency excitations, Chaos Solitons Fractals, 160 (2022), 9 pages
-
[33]
C. Zhang, X. Ma, Q. Tang, Q. Bi, Complex bifurcation structures and bursting oscillations of an extended Duffing-van der Pol oscillator, Math. Methods Appl. Sci., (2022), 1–17