Numerical approximation of the dissipativity of energy and spectrum for a damped Euler-Bernoulli beam with variable coefficients
Authors
B. G. Jean-Marc
- Universite Nangui Abrogoua d’Abobo-Adjame and UFR Sciences Fondamentales et Appliquees.
Y. S. A. Joresse
- Universite Nangui Abrogoua d’Abobo-Adjame and UFR Sciences Fondamentales et Appliquees, Cote d’Ivoire.
T. K. Augustin
- Institut National Polytechnique Houphouet-Boigny de Yamoussoukro, Cote d’Ivoire.
Abstract
This article concerns the numerical study of the behaviour of a flexible beam of Euler-Bernoulli to which one adds to its internal composition a damping of the viscous type. This damping naturally exerts a dissipative force (or viscous damping force) on the beam and opposes any deformation, in proportion to the rate of deformation. We are therefore interested in the impact of the damper on the exponential stability of the beam. We develop here a numerical method which faithfully reproduces the theoretical results obtained by several authors. Simulations are provided to illustrate our results.
Share and Cite
ISRP Style
B. G. Jean-Marc, Y. S. A. Joresse, T. K. Augustin, Numerical approximation of the dissipativity of energy and spectrum for a damped Euler-Bernoulli beam with variable coefficients, Journal of Nonlinear Sciences and Applications, 16 (2023), no. 3, 123--144
AMA Style
Jean-Marc B. G., Joresse Y. S. A., Augustin T. K., Numerical approximation of the dissipativity of energy and spectrum for a damped Euler-Bernoulli beam with variable coefficients. J. Nonlinear Sci. Appl. (2023); 16(3):123--144
Chicago/Turabian Style
Jean-Marc, B. G., Joresse, Y. S. A., Augustin, T. K.. "Numerical approximation of the dissipativity of energy and spectrum for a damped Euler-Bernoulli beam with variable coefficients." Journal of Nonlinear Sciences and Applications, 16, no. 3 (2023): 123--144
Keywords
- Beam equation
- viscous damping
- Galerkin approximation
- finite elements
- error estimates
MSC
- 35A15
- 35B35
- 35B45
- 37N30
- 35L20
- 65N30
- 74S05
References
-
[1]
H. T. Banks, I. G. Rosen, Computational methods for the identification of spatially varying stiffness and damping in beams, Control Theory Adv. Tech., 3 (1987), 1–32
-
[2]
G. J. M. Bomisso, K. A. Tour´e, G. Yoro, A study of exponential stability for a flexible Euler-Bernoulli beam with variable coefficients under a force control in rotation and velocity rotation, Glob. J. Pure Appl. Math., 13 (2017), 6991–7008
-
[3]
G. J. M. Bomisso, A. Tour´e, G. Yoro, Stabilization of variable coefficients Euler-Bernoulli beam with viscous damping under a force control in rotation and velocity rotation, J. Math. Res., 9 (2017), 1–13
-
[4]
S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, Springer, New York (2008)
-
[5]
S. M. Choo, S. K. Chung, R. Kannan, Finite element Galerkin solutions for the strongly damped extensible beam equations, Korean J. Comput. Appl. Math., 9 (2002), 27–43
-
[6]
P. G. Ciarlet, The Finite Element Method for Elliptic problems, North-Holland Publishing Co., Amsterdam-New York- Oxford (1978)
-
[7]
G. H. Golub, C. F. Van Loan, Matrix computations, Johns Hopkins University Press, Baltimore, MD (1989)
-
[8]
K. A. A. Hermith, C. Adama, Coulibaly, T. K. Augustin, Numerical approximation of spectrum for variable coefficients Euler-Bernoulli beams under a force control in position and velocity, Int. J. Appl. Math., 30 (2017), 211–228
-
[9]
C. B. Moler, G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10 (1973), 241–256
-
[10]
M. E. Patrice, T. K. Augustin, T. M. Mathurin, Numerical approximation of the spectrum for a hyperbolic equation with boundary condition, Far East J. Appl. Math., 60 (2011), 41–53
-
[11]
M. A. Ragusa, A. Tachikawa, Boundary regularity of minimizers of p(x)-energy functionals, Ann. Inst. H. Poincar´e C Anal. Non Lin´eaire., 33 (2016), 451–476
-
[12]
J. Rappaz, M. Picasso, Introduction `a l’analyse num´erique, Presses Polytechniques et Universitaires Romandes, Lausanne (1998)
-
[13]
A. Scapellato, Regularity of solutions to elliptic equations on Herz spaces with variable exponents, Bound. Value Probl., 2019 (2019), 9 pages
-
[14]
G. Strang, G. J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973 (1973), 154 pages
-
[15]
K. A. Tour´e, A. Coulibaly, A. A. H. Kouassi, Riesz basis and exponential stability for Euler-Bernoulli beams with variable coefficients and indefinite damping under a force control in position and velocity, Electron. J. Differ. Equ., 2015 (2015), 1–20
-
[16]
T. S. Wang, A Hermite cubic immersed finite element space for beam design problems, Thesis, Blacksburg, Virginia, (2015),
-
[17]
J.-M. Wang, G.-Q. Xu, S.-P. Yung, Riesz basis property, exponential stability of variable coefficient Euler-Bernoulli beams with indefinite damping, IMA J. Appl. Math., 70 (2005), 459–477