Coupling homogenization and large deviations, with applications to nonlocal parabolic partial differential equations

Volume 16, Issue 3, pp 168--179 http://dx.doi.org/10.22436/jnsa.016.03.03
Publication Date: October 08, 2023 Submission Date: June 12, 2023 Revision Date: August 07, 2023 Accteptance Date: August 11, 2023

Authors

A. Coulibaly - Amadou Mahtar Mbow University of Dakar, Dakar, Senegal.


Abstract

Consider the following nonlocal integro-differential operator of Lévy-type \(\mathcal{L}^{\alpha}_{\varepsilon,\delta}\) given by \[ \mathcal{L}^{\alpha}_{\varepsilon,\delta}f(x):=\int_{\mathbb{R}^{d}\backslash \left\lbrace 0\right\rbrace}\bigg[ f\left( x+\varepsilon\sigma\left(\frac{\scriptstyle x}{\scriptstyle \delta},y\right)\right) - f(x) -\varepsilon\sigma^{i}\left(\frac{\scriptstyle x}{\scriptstyle \delta},y\right)\partial_{i}f(x)\boldsymbol{1}_{B} (y)\bigg] \nu_{\varepsilon}^{\alpha}(dy)+\left[ \left(\frac{\scriptstyle \varepsilon}{\scriptstyle \delta}\right)^{\alpha-1}b^{i}_{0}\left(\frac{\scriptstyle x}{\scriptstyle \delta}\right)+b^{i}_{1}\left(\frac{\scriptstyle x}{\scriptstyle \delta}\right) \right] \partial_{i}f(x), \] related to stochastic differential equations driven by multiplicative isotropic \(\alpha\)-stable Lévy noise (\(1<\alpha<2\)). We study by using homogenization theory the behavior of \(u^{\varepsilon,\delta}:\mathbb{R}^{d}\longrightarrow\mathbb{R}\) of double perturbed Kolmogorov, Petrovskii and Piskunov (KPP)-type with periodic coefficients varying over length scale \(\delta\) and nonlinear reaction term of scale \(1/\varepsilon\), \begin{equation}\label{eq1} \left\lbrace \begin{array}{ll} \frac{\partial u^{\varepsilon,\delta}}{\partial t}(t,x)=\mathcal{L}^{\alpha}_{\varepsilon,\delta}u^{\varepsilon,\delta}(t,x)+\frac{\scriptstyle 1}{\scriptstyle \varepsilon}f\left(\frac{\scriptstyle x}{\scriptstyle \delta},u^{\varepsilon,\delta}(t,x) \right) , &x\in\mathbb{R}^{d},\ 0<t,\\ u^{\varepsilon,\delta}(0,x)=u_{0}(x), &x\in\mathbb{R}^{d}. \end{array} \right. \end{equation} The behavior is required as \(\varepsilon,\delta\) both tend to \(0\). Our homogenization method is probabilistic. Since \(\delta\) and \(\varepsilon\) go at the same rate, we may apply the large deviations principle with homogenized coefficients.


Share and Cite

  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
ISRP Style

A. Coulibaly, Coupling homogenization and large deviations, with applications to nonlocal parabolic partial differential equations, Journal of Nonlinear Sciences and Applications, 16 (2023), no. 3, 168--179

AMA Style

Coulibaly A., Coupling homogenization and large deviations, with applications to nonlocal parabolic partial differential equations. J. Nonlinear Sci. Appl. (2023); 16(3):168--179

Chicago/Turabian Style

Coulibaly, A.. "Coupling homogenization and large deviations, with applications to nonlocal parabolic partial differential equations." Journal of Nonlinear Sciences and Applications, 16, no. 3 (2023): 168--179


Keywords


MSC


References