Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution
Authors
B. Khan
- School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road, Shanghai 200241, Peoples Republic of China.
M. Ghaffar Khan
- Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan.
T. G. Shaba
- Department of Mathematics, Landmark University, Omu-Aran 251103, Nigeria.
Abstract
In recent years, many new subclasses of analytic and bi-univalent functions have been studied and examined from different viewpoints and prospectives. In this article, we introduce new subclass of analytic and bi-univalent functions
based on Mittag-Leffler type Borel distribution associated with the Gegenbauer
polynomials. Furthermore we obtain estimates for \(\left\vert
a_{2}\right\vert ,\) \(\left\vert a_{3}\right\vert \), and \(\left\vert
a_{4}\right\vert \) coefficients and Fekete-Szego inequality for this functions class. Providing specific values to parameters involved in our main
results, we get some new results.
Share and Cite
ISRP Style
B. Khan, M. Ghaffar Khan, T. G. Shaba, Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution, Journal of Nonlinear Sciences and Applications, 16 (2023), no. 3, 180--197
AMA Style
Khan B., Khan M. Ghaffar, Shaba T. G., Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution. J. Nonlinear Sci. Appl. (2023); 16(3):180--197
Chicago/Turabian Style
Khan, B., Khan, M. Ghaffar, Shaba, T. G.. "Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution." Journal of Nonlinear Sciences and Applications, 16, no. 3 (2023): 180--197
Keywords
- Analytic function
- bi-univalent function
- Gegenbaure polynomials
- coefficient estimates
- subordination
- Fekete-Szego functional problems
MSC
References
-
[1]
B. Ahmad, M. G. Khan, B. A. Frasin, M. K. Aouf, T. Abdeljawad, W. K. Mashwani, M. Arif, On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math., 6 (2021), 3037–3052
-
[2]
I. Aldawish, T. Al-Hawary, B. A. Frasin, Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator, Mathematics, 8 (2020), 11 pages
-
[3]
W. A. Al-Salam, L. Carlitz, The Gegenbauer addition theorem, J. Math. Phys., 42 (1963), 147–156
-
[4]
S¸. Altınkaya, S. Yalc¸ın, On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class , Bol. Soc. Mat. Mex. (3), 25 (2019), 567–575
-
[5]
S¸. Altınkaya, S. Yalc¸ın, The (p, q)-Chebyshev polynomial bounds of a general bi-univalent function class, Bol. Soc. Mat. Mex. (3), 26 (2020), 341–348
-
[6]
A. Amourah, A. Alamoush, M. Al-Kaseasbeh, Gegenbauer polynomials and bi-univalent functions, Palest. J. Math., 10 (2021), 625–632
-
[7]
A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081
-
[8]
D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ., 61 (2016), 338–350
-
[9]
A. Bayad, T. Kim, Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials, Russ. J. Math. Phys., 18 (2011), 133–143
-
[10]
D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, Academic Press, London-New York (1980)
-
[11]
D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes¸-Bolyai Math., 31 (1986), 70–77
-
[12]
S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., 43 (2013), 59–65
-
[13]
V. S. Buyarov, P. L´opez-Art´es, A. Mart´ınez-Finkelshtein, W. Van Assche, Information entropy of Gegenbauer polynomials, J. Phys. A, 33 (2000), 6549–6560
-
[14]
S. M. El-Deeb, G. Murugusundaramoorthy, A. Alburaikan, Bi-Bazilevic functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials, J. Math. Comput. Sci., 24 (2022), 235–245
-
[15]
P. Filipponi, A. F. Horadam, Second derivative sequences of Fibonacci and Lucas polynomials, Fibonacci Quart., 31 (1993), 194–204
-
[16]
B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43 (2014), 383–389
-
[17]
B. A. Frasin, An application of an operator associated with generalized Mittag-Leffler function, Konuralp J. Math., 7 (2019), 199–202
-
[18]
B. A. Frasin, T. Al-Hawary, F. Yousef, Some properties of a linear operator involving generalized Mittag-Leffler function, Stud. Univ. Babes¸-Bolyai Math., 65 (2020), 67–75
-
[19]
B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573
-
[20]
M. Fekete, G. Szego, Eine Bemerkinkung A˜ berunggerade schlichte Funktionen, J. Lond. Math. Soc., s1-8 (1933), 85–89
-
[21]
M. Garg, P. Manohar, S. L. Kalla, A Mittag-Leffler-typefunction of two variables, Integral Transforms Spec. Funct., 24 (2013), 934–944
-
[22]
Q. Hu, H. M. Srivastava, B. Ahmad, N. Khan, M. G. Khan, W. K. Mashwani, B. Khan, A subclass of multivalent Janowski type q-starlike functions and its consequences, Symmetry, 13 (2021), 1–14
-
[23]
M. G. Khan, B. Ahmad, N. Khan, W. K. Mashwani, S. Arjika, B. Khan, R. Chinram, Applications of Mittag-Leffler type Poisson distribution to a subclass of analytic functions involving conic-type regions, J. Funct. Spaces, 2021 (2021), 9 pages
-
[24]
B. Khan, I. Aldawish, S. Araci, M. G. Khan, Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function, Fractal Fract., 6 (2022), 1–11
-
[25]
S. Khan, A. A. Al-Gonah, G. Yasmin, Generalized and mixed type Gegenbauer polynomials, J. Math. Anal. Appl., 390 (2012), 197–207
-
[26]
B. Khan, Z.-G. Liu, T. G. Shaba, S. Araci, N. Khan, M. G. Khan, Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., 2022 (2022), 7 pages
-
[27]
B. Khan, Z.-G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent q-starlike functions involving higher-order q-Derivatives, Mathematics, 8 (2020), 1–12
-
[28]
B. Khan, H. M. Srivastava, N. Khan, M. Darus, Q. Z. Ahmad, M. Tahir, Applications of certain conic domains to a subclass of q-starlike functions associated with the Janowski functions, Symmetry, 13 (2021), 1–18
-
[29]
K. R. Karthikeyan, G. Murugusundaramoorthy, S. D. Purohit, D. L. Suthar, Certain class of analytic functions with respect to symmetric points defined by Q-calculus, J. Math., 2021 (2021), 9 pages
-
[30]
G. Y. Lee, M. Asci, Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials, J. Appl. Math., 2012 (2012), 18 pages
-
[31]
M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68
-
[32]
A. Lupas, A guide of Fibonacci and Lucas polynomials, Octogon Math. Mag., 7 (1999), 3–12
-
[33]
G. M. Mittag-Leffler, Sur la nouvelle fonction E(x), C. R. Acad. Sci. Paris, 137 (1903), 554–558
-
[34]
G. Murugusundaramoorthy, S. M. El-Deeb, Second Hankel determinant for a class of analytic functions of the Mittag- Leffler-type Borel distribution related with Legendre polynomials, TWMS J. Appl. Eng. Math., 12 (2022), 1247–1258
-
[35]
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1, Arch. Rational Mech. Anal., 32 (1969), 100–112
-
[36]
S. D. Purohit, M. M. Gour, S. Joshi, D. L. Suthar, Certain classes of analytic functions bound with Kober operators in q-calculus, J. Math., 2021 (2021), 8 pages
-
[37]
C. Ramachandran, S. Annamalai, B. A. Frasin, The q-difference operator associated with the multivalent function bounded by conical sections, Bol. Soc. Parana. Mat. (3), 39 (2021), 133–146
-
[38]
J. S´anchez-Ruiz, Information entropy of Gegenbauer polynomials and Gaussian quadrature, J. Phys. A, 36 (2003), 4857–4865
-
[39]
K. A. Selvakumaran, M. Gomathi, S. D. Purohit, D. Kumar, Fekete-SzegA˜ ¶ Inequalities for New Classes of Analytic Functions Associated with Fractional q-Differintegral Operator, Sci. Technol. Asia, 26 (2021), 160-168
-
[40]
M. Shah, Applications of Gegenbauer (ultraspherical) polynomials in cooling of a heated cylinder, An. Univ. Timis¸oara Ser. S¸ti. Mat., 8 (1970), 207–212
-
[41]
L. Shi, B. Ahmad, N. Khan, M. G. Khan, S. Araci, W. K. Mashwani, B. Khan, Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions, Symmetry, 13 (2021), 1–12
-
[42]
L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry, 12 (2020), 1–11
-
[43]
I. N. Sneddon, The evaluation of an integral involving the product of two Gegenbauer polynomials, SIAM Rev., 9 (1967), 569–572
-
[44]
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344
-
[45]
H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformatioons, J. Nonlinear Convex Anal., 22 (2021), 1501–1520
-
[46]
H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math., 167 (2021), 16 pages
-
[47]
T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, (1981),
-
[48]
P. Vellucci, A. M. Bersani, The class of Lucas-Lehmer polynomials, Rend. Mat. Appl. (7), 37 (2016), 43–62
-
[49]
A. K. Wanas, J. A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., 4 (2020), 71–82
-
[50]
T. Wang, W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 55 (2012), 95–103
-
[51]
A. Wiman, U¨ ber die Nullstellen der Funktionen E(x), Acta Math., 29 (1905), 217–234
-
[52]
C. Zhang, B. Khan, T. G. Shaba, J.-S. Ro, S. Araci, M. G. Khan, Applications of q-Hermite polynomials to subclasses of analytic and bi-univalent Functions, Fractal Fract., 6 (2022), 1–15
-
[53]
H. Zhou, K. A. Selvakumaran, S. Sivasubramanian, S. D. Purohit, H. Tang, Subordination problems for a new class of Bazileviˇc functions associated with k-symmetric points and fractional q-calculus operators, AIMS Math., 6 (2021), 8642–8653