New types of convergence of double sequences in neutrosophic fuzzy \(G\)-metric spaces
Authors
V. A. Khan
- Department of Mathematics, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India.
O. Kisi
- Department of Mathematics, Bartın University, Bartın-74100, Turkey.
R. Akbiyik
- Department of Mathematics, Bartın University, Bartın-74100, Turkey.
Abstract
In this study, we present statistical convergence, statistical limit points,
and statistical cluster points of double sequences in neutrosophic fuzzy
\(G\)-metric space with order \(q\), extending the notion of neutrosophic fuzzy
metric space. We support our assertions with relevant theorems and elucidate
them through illustrative examples. Following the establishment of statistical
convergence and the scrutiny of its properties within these spaces, we explore
the concepts of lacunary statistical convergence and strongly lacunary
convergence of double sequences, while also investigating the relationships
among them.
Share and Cite
ISRP Style
V. A. Khan, O. Kisi, R. Akbiyik, New types of convergence of double sequences in neutrosophic fuzzy \(G\)-metric spaces, Journal of Nonlinear Sciences and Applications, 17 (2024), no. 4, 150--179
AMA Style
Khan V. A., Kisi O., Akbiyik R., New types of convergence of double sequences in neutrosophic fuzzy \(G\)-metric spaces. J. Nonlinear Sci. Appl. (2024); 17(4):150--179
Chicago/Turabian Style
Khan, V. A., Kisi, O., Akbiyik, R.. "New types of convergence of double sequences in neutrosophic fuzzy \(G\)-metric spaces." Journal of Nonlinear Sciences and Applications, 17, no. 4 (2024): 150--179
Keywords
- Neutrosophic normed spaces
- \(g\)-metric space
- statistical convergence
- statistical Cauchy sequence
- statistical limit points
- statistical cluster points
MSC
References
-
[1]
R. Abazari, Statistical convergence in probabilistic generalized metric spaces wrt strong topology, J. Inequal. Appl., 2021 (2021), 11 pages
-
[2]
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87–96
-
[3]
T. Bera, N. K. Mahapatra, On neutrosophic soft linear space, Fuzzy Inf. Eng., 9 (2017), 299–324
-
[4]
T. Bera, N. K. Mahapatra, Neutrosophic soft normed linear spaces, Neutrosophic Sets Syst., 23 (2018), 52–71
-
[5]
C. C¸ akan, B. Altay, H. C¸ os¸kun, Double lacunary density and lacunary statistical convergence of double sequences, Studia Sci. Math. Hungar., 47 (2010), 35–45
-
[6]
H. Choi, S. Kim, S. Y. Yang, Structure for 1-metric spaces and related fixed point theorems, arXiv preprint arXiv:1804.03651, (2018), 1–41
-
[7]
Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86 (1982), 74–95
-
[8]
B. C. Dhage, A study of some fixed point theorems, Ph.D. Thesis, Marathwada Univ. Aurangabad, (1984),
-
[9]
E. D¨ undar, B. Altay, On some properties of I2-convergence and I2-Cauchy of double sequences, Gen. Math. Notes, 7 (2011), 1–12
-
[10]
E. Du¨ndar, O¨ . Talo, I2-Cauchy double sequences of fuzzy numbers, Gen. Math. Notes, 16 (2013), 103–114
-
[11]
E. Du¨ndar, O¨ . Talo, F. Bas¸ar, Regularly I2-convergence and regularly I2-Cauchy double sequences of fuzzy numbers, Int. J. Anal., 2013 (2013), 7 pages
-
[12]
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244
-
[13]
J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43–51
-
[14]
S. G¨ahler, 2-metrische R¨aume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115–148
-
[15]
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395–399
-
[16]
M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385–389
-
[17]
M. Gu¨ rdal, O¨ . Kis¸i, S. Kolancı, New convergence definitions for double sequences in g-metrıc spaces, J. Classical Anal., 21 (2023), 173–185
-
[18]
S. Y. G ¨ uzey, E. D¨ undar, M. Arslan, I2-uniform convergence of double sequences of functions in 2-normed spaces, Commun. Adv. Math. Sci., 5 (2022), 150–160
-
[19]
K. S. Ha, Y. J. Cho, S. S. Kim, A. White, On strictly convex and 2-convex 2-normed spaces, Math. Japonica, 33 (1988), 375–384
-
[20]
B. Hazarika, A. Alotaibi, S. A. Mohiuddine, Statistical convergence in measure for double sequences of fuzzy-valued functions, Soft Comput., 24 (2020), 6613–6622
-
[21]
V. A. Khan, M. Faisal, Tauberian theorems for Ces`aro summability in neutrosophic normed spaces, Filomat, 37 (2023), 3411–3426
-
[22]
V. A. Khan, M. D. Khan, M. Ahmad, Some new type of lacunary statistically convergent sequences in neutrosophic normed space, Neutrosophic Sets Syst., 42 (2021), 239–252
-
[23]
V. A. Khan, M. D. Khan, A. Kumar, Statistical convergence of sequences of functions in neutrosophic normed spaces, Numer. Funct. Anal. Optim., 44 (2023), 1443–1463
-
[24]
V. A. Khan, S. K. A. Rahaman, Statistical convergence in intuitionistic fuzzy G-metric spaces with order n, Filomat, 38 (2024), 2785–2812
-
[25]
V. A. Khan, S. K. A. Rahaman, B. Hazarika, M. Alam, Rough lacunary statistical convergence in neutrosophic normed spaces, J. Intell. Fuzzy Syst., 45 (2023), 7335–7351
-
[26]
V. A. Khan, U. Tuba, S. K. A. Rahaman, Motivations and basics of fuzzy, intuitionistic fuzzy and neutrosophic sets and norms, Yugosl. J. Oper. Res., 32 (2022), 299–323
-
[27]
M. Kiris¸ci, N. S¸ims¸ek, Neutrosophic metric spaces, Math. Sci. (Springer), 14 (2020), 241–248
-
[28]
O¨ . Kis¸i, E. Du¨ndar, I2-uniformly convergence of double sequences of fuzzy valued functions, Acta Math. Univ. Comenian. (N.S.), 91 (2022), 281–300
-
[29]
I. Kramosil, J. Mich´alek, Fuzzy metrics and statistical metric spaces, Kybernetika (Prague), 11 (1975), 336–344
-
[30]
S. A. Mohiuddine, A. Alotaibi, Coupled coincidence point theorems for compatible mappings in partially ordered intuitionistic generalized fuzzy metric spaces, Fixed Point Theory Appl., 2013 (2013), 18 pages
-
[31]
M. Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223–231
-
[32]
Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, In: International Conference on Fixed Point Theory and Applications, Yokohama Publ., Yokohama, (2004), 189–198
-
[33]
Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297
-
[34]
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22 (2004), 1039–1046
-
[35]
R. F. Patterson, E. Savas, Lacunary statistical convergence of double sequences, Math. Commun., 10 (2005), 55–61
-
[36]
F. Samarandache, Neutrosophic set—a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287–297
-
[37]
B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334
-
[38]
G. Sun, K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. Eng. Technol., 2 (2010), 673–678
-
[39]
B. C. Tripathy, A. Baruah, Lacunary statically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J., 50 (2010), 565–574
-
[40]
B. C. Tripathy, A. J. Dutta, Lacunary bounded variation sequence of fuzzy real numbers, J. Intell. Fuzzy Syst., 24 (2013), 185–189
-
[41]
W. B. Vasantha Kandasamy, F. Samarandache, Neutrosophic rings, Hexis, Phoenix, AZ (2006)
-
[42]
L. A. Zadeh, Fuzzy sets, Inf. Control, 18 (1965), 338–353
-
[43]
C. Zhou, S. Wang, L. C´ iric´, S. M. Alsulami, Generalized probabilistic metric spaces and fixed point theorem, Fixed Point Theory Appl., 2014 (2014), 15 pages