A novel solution for fractional chaotic Chen system

1585
Downloads

2068
Views
Authors
A. K. Alomari
 Department of Mathematics, Faculty of Science, Yarmouk University, 21163 Irbid, Jordan.
Abstract
A novel solution to the fraction chaotic Chen system is presented in this paper by using the step homotopy
analysis method. This method yields a continuous solution in terms of a rapidly convergent infinite power
series with easily computable terms. Moreover, the residual error of the SHAM solution is defined and
computed for each time interval. Via the computing of the residual error we observe that the accuracy of
the present method tends to \(10^{11}\) which is very high.
Share and Cite
ISRP Style
A. K. Alomari, A novel solution for fractional chaotic Chen system, Journal of Nonlinear Sciences and Applications, 8 (2015), no. 5, 478488
AMA Style
Alomari A. K., A novel solution for fractional chaotic Chen system. J. Nonlinear Sci. Appl. (2015); 8(5):478488
Chicago/Turabian Style
Alomari, A. K.. "A novel solution for fractional chaotic Chen system." Journal of Nonlinear Sciences and Applications, 8, no. 5 (2015): 478488
Keywords
 Chaotic system
 fractional Chen system
 homotopy analysis method
 step homotopy analysis method
 residual error.
MSC
References

[1]
S. Abbasbandy, The application of homotopy analysis method to solve a generalized HirotaSatsuma coupled KdV equation, Phys. Lett. A, 361 (2007), 478–483.

[2]
A. K. Alomari, M. S. M. Noorani, R. Nazar, On the homotopy analysis method for the exact solutions of Helmholtz equation, Chaos Solitons Fractal, 41 (2009), 1873–1879.

[3]
A. K. Alomari, F. Awawdeh, N. Tahat, F. Bani Ahmad, W . Shatanawi , Multiple solutions for fractional differential equations: Analytic approach, Appl. Math. Comput., 219 (2013), 8893–8903.

[4]
A. K. Alomari, M. S. N. Noorani, R. Nazar, Adaptation of homotopy analysis method for the numericanalytic solution of Chen system, Comm. Nonlinear Sci. Numer. Simul., 14 (2009), 2336–2346.

[5]
A. K. Alomari, M. S. N. Noorani, R. Nazar, C. P. Li, Homotopy analysis method for solving fractional Lorenz system, Comm. Nonlinear Sci. Numer. Simul., 15 (2010), 1864–1872.

[6]
M. A. F. Araghi, A. Fallahzadeh, Discrete Homotopy Analysis Method for Solving Linear Fuzzy Differential Equations, Adv. Environ. Biol., 9 (2015), 195–201.

[7]
A. S. Bataineh, M. S. N. Noorani, I. Hashim, Solving systems of ODEs by homotopy analysis method , Comm. Nonlinear Sci. Numer. Simul., 13 (2008), 2060–2070.

[8]
M. S. H. Chowdhury, I. Hashim, Application of multistage homotopyperturbation method for the solutions of the Chen system , Nonlinear Anal. Real. World Appl., 10 (2009), 381–391.

[9]
K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248.

[10]
K. Diethelm, N. J. Ford, A. D. Freed, A predictorcorrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22.

[11]
A. Fallahzadeh, K. Shakibi, A method to solve ConvectionDiffusion equation based on homotopy analysis method, J. Interpolat. Approx. Sci. Comput., 2015 (2015), 8 pages.

[12]
A. Golbabai, K. Sayevand , An efficient applications of hes variational iteration method based on a reliable modification of Adomian algorithm for nonlinear boundary value problems , J. Nonlinear Sci. Appl., 3 (2010), 152 – 156.

[13]
T. Hayat, M. Sajid, On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Phys. Lett. A, 361 (2007), 316–322.

[14]
T. Hayat, M. Khan, Homotopy solutions for a generalized secondgrade fluid past a porous plate, Nonlinear Dyn., 42 (2005), 395–405.

[15]
H. Jafari, V. DaftardarGejji , Solving a system of nonlinear fractional differential equations using Adomian decomposition, J. Comput. Appl. Math., 196 (2006), 644–651.

[16]
C. Li C, G. Peng, Chaos in Chen’s system with a fractional order, Chaos Solitons Fractals, 22 (2004), 443–450.

[17]
S. Liao, The proposed homotopy analysis techniques for the solution of nonlinear problems, Ph.D. Dissertation. Shanghai Jiao Tong University, Shanghai (in English) (1992)

[18]
S. Liao, Beyond perturbation: Introduction to the homotopy analysis method, CRC Press, Chapman and Hall, Boca Raton (2003)

[19]
S. Liao, Notes on the homotopy analysis method: Some definitions and theorems, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 983–997.

[20]
Y. Liu Y, H. Shi, Existence of unbounded positive solutions for BVPs of singular fractional differential equations, J. Nonlinear Sci. Appl., 5 (2012), 281–293.

[21]
S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A., 365 (2007), 345–350.

[22]
S. Momani, Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, 31 (2007), 1248–1255.

[23]
M. Inc, On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method, Phys. Lett. A., 365 (2007), 412–415.

[24]
Z. Odibat, S. Momani, Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, 36 (2008), 167–174.

[25]
Z. Odibat, S. Momani, Application of variational iteration method to nonlinear differential equation of fractional order , Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 27–34.

[26]
I. Podlubny, Fractional differential equations, Academic Press, New York (1999)

[27]
T. Qiu, Z. Bai , Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Nonlinear Sci. Appl., 1 (2008), 123–131.

[28]
M. Sajid, T. Javed, T. Hayat, MHD rotating flow of a viscous fluid over a shrinking surface, Nonlinear Dyn., 51 (2008), 259–265.

[29]
N. T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., 131 (2002), 517–529.

[30]
T. Wang, F. Xie, Existence and uniqueness of fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 1 (2008), 206–212.

[31]
Y. Wang, Y. Yang, Positive solutions for Caputo fractional differential equations involving integral boundary conditions, J. Nonlinear Sci. Appl., 8 (2015), 99–109.

[32]
J. Wanga, X. Xionga, Y. Zhang, Extending synchronization scheme to chaotic fractionalorder Chen systems, Physica A, 370 (2006), 279–285.

[33]
W. Yang, Positive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Nonlinear Sci. Appl., 8 (2015), 110–129.

[34]
T. S. Zhou, C. Li, Synchronization in fractionalorder differential systems, Phys. D., 212 (2005), 111–125.

[35]
H. Zhu, S. Zhou, Z. He, Chaos synchronization of the fractionalorder Chen’s system, Chaos Solitons Fractals, 41 (2009), 2733–2740.