Global Bifurcation Analysis of the Lorenz System
-
2953
Downloads
-
3888
Views
Authors
Valery A. Gaiko
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganov Str. 6, Minsk 220012, Belarus.
Abstract
We carry out the global bifurcation analysis of the classical Lorenz system. For many years, this system has
been the subject of study by numerous authors. However, until now the structure of the Lorenz attractor
is not clear completely yet, and the most important question at present is to understand the bifurcation
scenario of chaos transition in this system. Using some numerical results and our bifurcational geometric
approach, we present a new scenario of chaos transition in the Lorenz system.
Share and Cite
ISRP Style
Valery A. Gaiko, Global Bifurcation Analysis of the Lorenz System, Journal of Nonlinear Sciences and Applications, 7 (2014), no. 6, 429--434
AMA Style
Gaiko Valery A., Global Bifurcation Analysis of the Lorenz System. J. Nonlinear Sci. Appl. (2014); 7(6):429--434
Chicago/Turabian Style
Gaiko, Valery A.. "Global Bifurcation Analysis of the Lorenz System." Journal of Nonlinear Sciences and Applications, 7, no. 6 (2014): 429--434
Keywords
- Lorenz system
- bifurcation
- singular point
- limit cycle
- chaos.
MSC
References
-
[1]
H. W. Broer, F. Takens, Dynamical Systems and Chaos, Springer, New York (2011)
-
[2]
E. J. Doedel, B. Krauskopf, H. M. Osinga, Global invariant manifolds in the transition to preturbulence in the Lorenz system, Indagationes Math., 22 (2011), 222-240.
-
[3]
V. A. Gaiko, Global Bifurcation Theory and Hilbert's Sixteenth Problem, Kluwer, Boston (2003)
-
[4]
V. A. Gaiko, Limit cycles of quadratic systems, Nonlinear Anal., 69 (2008), 2150-2157.
-
[5]
V. A. Gaiko, A quadratic system with two parallel straight-line-isoclines, Nonlinear Anal., 71 (2009), 5860-5865.
-
[6]
V. A. Gaiko, On the geometry of polynomial dynamical systems, J. Math. Sci., 157 (2009), 400-412.
-
[7]
V. A. Gaiko, On limit cycles surrounding a singular point, Differ. Equ. Dyn. Syst., 20 (2012), 329-337.
-
[8]
V. A. Gaiko, The applied geometry of a general Liénard polynomial system, Appl. Math. Letters, 25 (2012), 2327-2331.
-
[9]
V. A. Gaiko, Limit cycle bifurcations of a general Liénard system with polynomial restoring and damping functions, Int. J. Dyn. Syst. Differ. Equ., 4 (2012), 242-254.
-
[10]
V. A. Gaiko, Limit cycle bifurcations of a special Liénard polynomial system, Adv. Dyn. Syst. Appl., 9 (2014), 109-123.
-
[11]
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York (2004)
-
[12]
N. A. Magnitskii, S. V. Sidorov , New Methods for Chaotic Dynamics, World Scientific, New Jarsey (2006)
-
[13]
L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part I, World Scientific, New Jarsey (1998)
-
[14]
L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part II, World Scientific, New Jarsey (2001)
-
[15]
S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.
-
[16]
C. Sparrou, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Springer, New York (1982)